On the Reachability Problem for Persistent Vector Replacement Systems

  • H. Müller
Part of the Computing Supplementum book series (COMPUTING, volume 3)


On the Reachability Problem for Persistent Vector Replacement Systems. The reachability problem for persistent vector replacement systems is shown to be decidable by giving an algorithm for constructing a semilinear representation of the reachability set.


Initial Segment Initial Vector Reachability Problem Infinite Path Finite Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Das Erreichbarkeitsproblem für persistente Vektor-Ersetzungs-Systeme. Das Erreichbarkeitsproblem für persistente Vektor-Ersetzungs-Systeme (isomorph zu verallgemeinerten Petri-Netzen) wird als entscheidbar nachgewiesen durch Konstruktion eines Algorithmus, der eine semilineare Darstellung der, Erreichbarkeitsmenge liefert.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Hack, M.: The equality problem for vector addition systems is undecidable. Theor. Computer Sei. 2, 77–96 (1976).MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    Hopcroft, J., Pansiot, J.-J.: On the reachability problem for 5-dimensional vector addition systems. Theor. Computer Science 8, 135–159 (1979).MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    Jones, N. D., Landweber, L. H., Lien, Y. E.: Complexity of some problems in Petri nets. Theor. Computer Science 4, 277–299 (1977).MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    Karp, R. M., Miller, R. E.: Parallel program Schemata. J. Comput. System Sei. 3,147–195 (1969).MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    Landweber, L. H., Robertson, E. L.: Properties of conflict-free and persistent Petri nets. J. Ass. Computing Machinery 25, 352–364 (1978).MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    van Leeuwen, J.: A partial Solution to the reachability problem for vector addition systems. 6th Ann. ACM Symp. on the Theory of Computing, pp. 303–309 (1974).Google Scholar
  7. [7]
    Machtey, M., Young, P.: An introduetion to the general theory of algorithms. New York: North- Holland 1978.Google Scholar
  8. [8]
    Rackoff, C.: The covering and boundedness problems for vector addition systems. Theor. Comp. Sei. 6, 223–231 (1978).MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    Sacerdote, G. S., Tenney, R. L.: The decidability of the reachability problem for vector addition systems. 9th Ann. ACM Symp. on Theory of Computing, pp. 61–77 (1977).Google Scholar
  10. [10]
    Starke, H. P.: Semilinearity and Petri nets. Fundamentals of Computation Theory 79 (Budach, L., ed.), pp. 423–429. Berlin: Akademie-Verlag 1979.Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • H. Müller
    • 1
  1. 1.Institut für Mathematische Maschinen und Datenverarbeitung (III)Universität Erlangen-NürnbergErlangenFederal Republic of Germany

Personalised recommendations