Analgesia Induced by Electrical Stimulation of the Brain Stem in Animals: Involvement of Serotoninergic Mechanisms

  • J.-M. Besson
  • J.-L. Oliveras
Part of the Acta Neurochirurgica Supplementum book series (NEUROCHIRURGICA, volume 30)


Over the last few years, many studies have centered on the analgesic effects induced by electrical stimulation of certain areas of the brain stem. Initial observations by Reynolds 63, demonstrating powerful analgesic effects induced by stimulation of the periaqueductal grey matter (PAG) in the rat, have led to subsequent studies (see ref. in 12, 23, 42, 49). The same analgesic effects following stimulation of the PAG have now been reported in cat 43, 53, monkey 27, and man 1, 36, 64.


Electrical Stimulation Brain Stem Analgesic Effect Dorsal Horn Brain Stimulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams, J. E., Naloxone reversal of analgesia produced by brain Stimulation in the human. Pain 2 (1976), 161–166.PubMedCrossRefGoogle Scholar
  2. 2.
    Akil, H., Mayer, D. J., Antagonism of stimulation-produced analgesia by p-CPA, a Serotonin synthesis inhibitor. Brain Res. 44 (1972), 692–697.PubMedCrossRefGoogle Scholar
  3. 3.
    Akil, H., Mayer, D. J., Liebeskind, J. C., Antagonism of stimulation-produced analgesia by naloxone, a narcotic antagonist. Science 191 (1976), 961–962.PubMedCrossRefGoogle Scholar
  4. 4.
    Akil, H., Richardson, D. E., Barchas, J. D., Li, C. H., Appearance of ß-endorphinlike immunoreactivity in human ventricular cerebrospinal fluid upon analgesic electrical Stimulation. Proc. Natl. Acad. Sci. (Wash.) 75 (1978), 5170–5172.CrossRefGoogle Scholar
  5. 5.
    Akil, H., Richardson, D. E., Hughues, J., Barchas, J. P., Enkephalin-like material elevated in ventricular cerebrospinal fluid of pain patients after analgesic focal Stimulation. Science 201 (1978), 463–465.PubMedCrossRefGoogle Scholar
  6. 6.
    Atweh, S. F., Kuhar, M. J., Autoradiographic localization of Opiate receptors in rat brain. II. The brain stem. Brain Res. 129 (1977), 1–12.PubMedCrossRefGoogle Scholar
  7. 7.
    Basbaum, A. I., Clanton, C. H., Fields, H. L., Three bulbospinal pathways from rostral medulla of the cat: an autoradiographic study of pain modulating systems. J. comp. Neurol. 178 (1978), 209–224.PubMedCrossRefGoogle Scholar
  8. 8.
    Basbaum, A. I., Clanton, C. H., Fields, H. L., Opiate and stimulus produced analgesia: functional anatomy of a medullospinal pathway. Proc. Nat. Acad. Sci. (Wash.) 73 (1976), 4685–4688.CrossRefGoogle Scholar
  9. 9.
    Basbaum, A. I., Marley, N. J. E., O’Keefe, J., Clanton, C. H., Reversal of morphine and stimulus-produced analgesia by subtotal spinal cord lesions. Pain 3 (1977), 43–56.PubMedCrossRefGoogle Scholar
  10. 10.
    Belcher, G., Ryall, R. W., Schaffner, R., The differential effects of 5-hydroxytryptamine, noradrenaline and Raphe Stimulation on nociceptive and non-nociceptive horn interneurones in the cat. Brain Res. 151 (1978),. 307–321.PubMedCrossRefGoogle Scholar
  11. 11.
    Berman, A. L., The Brain Stem of the Cat. A Cytoarchitectonic Atlas with Stereotaxic Coordinates. Madison, Wisc.: Univ. of Wisconsin Press. 1968.Google Scholar
  12. 12.
    Besson, J. M., Le Bars, D., Oliveras, J. L., L’analgésie morphinique: donnees neurobiologiques. Ann. Anesth. Franc. XIX, 5 (1978), 343–369.Google Scholar
  13. 13.
    Bobillier, P., Seguin, S., Petitjean, F., Salvert, D., Touret, M., Jouvet, M., The raphé nuclei of the cat brain stem: a topographical atlas of their efferent projections as revealed by autoradiography. Brain Res. 113 (1976), 449–486.PubMedCrossRefGoogle Scholar
  14. 14.
    Brodal, A., Taber, E., Walberg, F., The raphe nuclei of the brain stem in the cat: II. Efferent connections. J. comp. Neurol. 114 (1960), 239–359.CrossRefGoogle Scholar
  15. 15.
    Carstens, E., Klumpp, D., Zimmermann, M., The opiate antagonist, Naloxone, does not affect descending inhibition from midbrain of nociceptive spinal neuronal discharges in the cat. Neurosci. Letters 11 (1979), 323–327.CrossRefGoogle Scholar
  16. 16.
    Dahlström, A., Fuxe, K., Evidence for the existence of monoamine neurons in the central nervous system. II. Experimentally induced changes in the intraneuronal amine levels of bulbospinal neuron systems. Acta physiol. scand. 64, Suppl. 247 (1965), 5–36.Google Scholar
  17. 17.
    Dewey, W. L., Harris, L. S., Howes, J. F., Nuite, J. A., The effect of various neurohumoral modulators on the activity of morphine and the narcotic anta- gonists in the tail-flick and phenylquinone tests. J. Pharmacol. Exp. Ther. 175 (1970), 435–442.PubMedGoogle Scholar
  18. 18.
    Dickenson, A. H., Oliveras, J. L., Besson, J. M., Role of the nucleus raphe magnus in opiate analgesia as studied by the microinjection technique in the rat. Brain Res. 170 (1979), 95–111.PubMedCrossRefGoogle Scholar
  19. 19.
    Duggan, A. W., Griersmith, B. I., Inhibition of the spinal transmission of nociceptive information by supraspinal Stimulation in the cat. Pain 6 (1979), 149–161.PubMedCrossRefGoogle Scholar
  20. 20.
    Duggan, A. W, Hall, J. H., Headley, P. M., Griersmith, B. T., The effect of Naloxone on the excitation of dorsal horn neurons of the cat by noxious and non-noxious cutaneous Stimuli. Brain Res. 138 (1977), 185–189.PubMedCrossRefGoogle Scholar
  21. 21.
    Fennessy, M. R., Lee, J. R., Modification of morphine analgesia by drugs affecting adrenergic and tryptaminergic mechanisms. J. Pharm. Pharmacol. 22 (1970), 930–935.PubMedCrossRefGoogle Scholar
  22. 22.
    Fields, H. L., Anderson, S. D., Evidence that raphe-spinal mediate opiate and midbrain stimulation-produced analgesia. Pain 5 (1978), 333–349.PubMedCrossRefGoogle Scholar
  23. 23.
    Fields, H. L., Basbaum, A. I., Brain stem control of spinal pain transmission neurons. Ann. Rev. Physiol. 40 (1978), 193–221.CrossRefGoogle Scholar
  24. 24.
    Fields, H. L., Basbaum, A. I., Clanton, C. H., Anderson, S. D., Nucleus raphe magnus inhibition of spinal cord dorsal horn neurons. Brain Res. 126 (1977), 441–453.PubMedCrossRefGoogle Scholar
  25. 25.
    Garau, L., Mulas, M. L., Pepeu, G., The influence of raphe lesions on the effect of morphine on nociception and cortical Ach Output. Neuropharmacology 14 (1975), 259–263.PubMedCrossRefGoogle Scholar
  26. 26.
    Genovese, E., Zonta, N., Mantegazza, P., Decreased antinociceptive activity of morphine in rats pretreated intraventricularly with 5.6-dihydroxytryptamine a long-lasting selective depletor of brain Serotonin. Psychopharmacology 32 (1973), 359–364.CrossRefGoogle Scholar
  27. 27.
    Goodman, S. J., Holcombe, V., Selective and Prolonged Analgesia in Monkey Resulting from Brain Stimulation. In: Advances in Pain Research and Therapy, Vol. 1, pp. 495–502 (Bonica, J. J., Albe-Fessard, D., eds.). 1976.Google Scholar
  28. 28.
    Görlitz, B., Frey, H., Central monoamines and antinociceptive drug action. Europ. J. Pharmacol. 20 (1972), 171–180.CrossRefGoogle Scholar
  29. 29.
    Guilbaud, G., Besson, J. M., Oliveras, J. L., Liebeskind, J. C., Suppression by LSD of the inhibitory effect exerted by dorsal raphe Stimulation on certain spinal cord interneurons in the cat. Brain Res. 61 (1973), 417–422.PubMedCrossRefGoogle Scholar
  30. 30.
    Guilbaud, G., Oliveras, J. L., Giesler, G., Jr., Besson, J. M., Effects induced by Stimulation of the centralis inferior nucleus of the raphe on dorsal horn interneurons in cat’s spinal cord. Brain Res. 126 (1977), 355–360.PubMedCrossRefGoogle Scholar
  31. 31.
    Hayes, R. L., Newlon, P. G., Rosecrans, J. A., Mayer, D. J., Reduction of stimulation-produced analgesia by lysergic acid diethylamide depressor of serotonergic neural activity. Brain Res. 122 (1977), 367–372.PubMedCrossRefGoogle Scholar
  32. 32.
    Headley, P. M., Duggan, A. W., Griersmith, B. T., Selective reduction by noradrenaline and 5-hydroxytryptamine of nociceptive responses of cat dorsal horn neurones. Brain Res. 145 (1978), 185–189.PubMedCrossRefGoogle Scholar
  33. 33.
    Hökfelt, T., Ljungdahl, A., Terenius, L., Eide, R., Nilsson, G., Immunohistochemical analysis of peptide pathways possibly related to pain and analgesia: enkephalin and substance P. Proc. Natl. Acad. Sci. (Wash.) 74 (1977), 3081–3085.CrossRefGoogle Scholar
  34. 34.
    Hong, J. S., Yang, H. Y. T., Fratta, W., Costa, E., Determination of methionin enkephalin in discrete regions of rat brain. Brain Res. 134 (1977), 383–386.PubMedCrossRefGoogle Scholar
  35. 35.
    Hosobuchi, Y., Tryptophan reversal of tolerance to analgesia induced by central gray Stimulation. Lancet 2 (1978), 47.PubMedCrossRefGoogle Scholar
  36. 36.
    Hosobuchi, Y, Adams, J. E., Linchitz, R., Pain relief by electrical Stimulation of central gray matter in humans. Science 197 (1977), 183–186.PubMedCrossRefGoogle Scholar
  37. 37.
    Hosobuchi, Y., Rossier, J., Bloom, J. E., Guillemin, R., Stimulation of human periaqueductal gray for pain relief increase immunoreactive beta-endorphin in ventricular fluid. Science 203 (1979), 279–281.PubMedCrossRefGoogle Scholar
  38. 38.
    Jordan, L. M, Kenshalo, D. R., Martin, R. F., Haber, L. H., Willis, W. D., Depression of primate spinothalamic tract neurons by iontophoretic application of 5-hydroxytryptamine. Pain 5 (1978), 135–142.PubMedCrossRefGoogle Scholar
  39. 39.
    Keller, O., Vycklicky, L., Sykova, E., Reflexes from Aö and Aa trigeminal afferents. Brain Res. 37 (1972), 330–332.PubMedCrossRefGoogle Scholar
  40. 40.
    Le Bars, D., Menetrey, D., Besson, J. M., Effects of morphine upon the lamina V type cell activities in the dorsal horn of decerebrate cat. Brain Res. 113 (1976), 293–310.CrossRefGoogle Scholar
  41. 41.
    Lee, J. R., Fennessy, M. R., The relationship between morphine analgesia and the levels of biogenic amines in the mouse brain. Europ. J. Pharmacol. 12 (1970), 65–70.Google Scholar
  42. 42.
    Liebeskind, J. C., Giesler, G., Jr., Urea, G., Evidence Pertaining to an Endogenous Mechanism of Pain Inhibition in the Central Nervous System. In: Sensory Functions of the Skin in Primates, pp. 561–573 (Zotterman, I., ed.). Pergamon Press. 1976.Google Scholar
  43. 43.
    Liebeskind, J. C., Guilbaud, G., Besson, J. M., Oliveras, J. L., Analgesia from electrical Stimulation of the periaqueductal gray matter in the cat: behavioral observations and inhibitory effects on spinal cord interneurons. Brain Res. 50 (1973), 441–446.PubMedCrossRefGoogle Scholar
  44. 44.
    Lovick, T. A., West, D. C., Wolstencroft, J. H., Interactions Between Brain Stem Nuclei and the Trigeminal System. In: Pain in the Trigeminal Region, pp. 307–317 (Anderson and Matthews eds.). Elsevier: North-Holland Biomedical Press. 1977.Google Scholar
  45. 45.
    Lovick, T. A., West, D. C., Wolstencroft, J. H., Responses of raphe spinal and other bulbar raphe neurones to Stimulation of the periaqueductal gray in the cat. Neurosci. Letters 8 (1978), 45–49.CrossRefGoogle Scholar
  46. 46.
    Martin, R. F., Jordan, L. M., Willis, W. D., Differential projections of cat medullary raphe neurons demonstrated by retrograde labelling following spinal cord lesions. J. comp. Neurol. 182 (1978), 77–88.PubMedCrossRefGoogle Scholar
  47. 47.
    Mayer, D. J., Hayes, R., Stimulation-produced analgesia: development of tolerance and cross-tolerance to morphine. Science 188 (1975), 941–943.PubMedCrossRefGoogle Scholar
  48. 48.
    Mayer, D. J., Liebeskind, J. C., Pain reduction by focal electrical Stimulation of the brain: an anatomical and behavioral analysis. Brain Res. 68 (1974), 73–93.PubMedCrossRefGoogle Scholar
  49. 49.
    Mayer, D. J., Price, D. D., Central nervous system mechanisms of analgesia. Pain 2 (1976), 379–404.PubMedCrossRefGoogle Scholar
  50. 50.
    Mayer, D. J., Wolfe, T. L., Akil, H., Carder, B., Liebeskind, J. C., Analgesia from electrical Stimulation in the brainstem of the rat. Science 174 (1971), 1351–1354.PubMedCrossRefGoogle Scholar
  51. 51.
    McCreery, D. B., Bloedel, J. R., Reduction of the response of cat spinothalamic neurons to graded mechanical Stimuli by electrical Stimulation of the lower brain stem. Brain Res. 97 (1975), 151–156.PubMedCrossRefGoogle Scholar
  52. 52.
    Menetrey, D., Chaouch, A., Besson, J. M., Location and properties of lumbar spinoreticular tract neurons in the rat. Neurosci. Letters J. Neurophysiol. (in press).Google Scholar
  53. 53.
    Oliveras, J. L., Besson, J. M., Guilbaud, G., Liebeskind, J. C., Behavioral and electrophysiological evidence of pain inhibition from midbrain Stimulation in the cat. Exp. Brain Res. 20 (1974), 32–44.Google Scholar
  54. 54.
    Oliveras, J. L., Bourgoin, S., Hery, F., Besson, J. M., Hamon, M., The topo- graphical distribution of serotoninergic terminals in the spinal cord of the cat: Biochemical mapping by the combined use of microdissection and micro- assay procedures. Brain Res. 138 (1977), 393–406.PubMedCrossRefGoogle Scholar
  55. 55.
    Oliveras, J. L., Guilbaud, G., Besson, J. M., A map of serotoninergic structures involved in Stimulation producing analgesia in unrestrained freely moving cats. Brain Res. 164 (1979), 317–322.PubMedCrossRefGoogle Scholar
  56. 56.
    Oliveras, J. L., Hosobuchi, Y., Bruxelles, J., Passot, C., Besson, J. M., Analgesic effects induced by electrical Stimulation of the nucleus raphe magnus in the rat: interaction with morphine analgesia. Abstracts 7th international Congress of Pharmacology (Paris), Vol. 1, No. 280, 1978.Google Scholar
  57. 57.
    Oliveras, J. L., Hosobuchi, Y., Guilbaud, G., Besson, J. M., Analgesia electrical Stimulation of the feline nucleus raphe magnus: development of tolerance and its reversal by 5-HTP. Brain Res. 146 (1978), 404–409.PubMedCrossRefGoogle Scholar
  58. 58.
    Oliveras, J. L., Hosobuchi, Y., Redjemi, F., Guilbaud, G., Besson, J. M., Opiate antagonist, naloxone, strongly reduces analgesia induced by Stimulation of a raphe nucleus (centralis inferior). Brain Res. 120 (1977), 221–229.PubMedCrossRefGoogle Scholar
  59. 59.
    Oliveras, J. L., Redjemi, F., Guilbaud, G., Besson, J. M., Analgesia induced by electrical Stimulation of the inferior centralis nucleus of the raphe in the cat. Pain 1 (1975), 139–245.PubMedCrossRefGoogle Scholar
  60. 60.
    Oliveras, J. L., Woda, A., Guilbaud, G., Besson, J. M., Inhibition of the jaw opening reflex by electrical Stimulation of the periaqueductal gray matter in the awake, unrestrained cat. Brain Res. 72 (1974), 328–331.PubMedCrossRefGoogle Scholar
  61. 61.
    Proudfit, H. K., Anderson, E. G., Morphine analgesia: blockade by raphe magnus lesions. Brain Res. 98 (1975), 612–618.PubMedCrossRefGoogle Scholar
  62. 62.
    Randic, M., Yu, H. H., Effects of 5-Hydroxytryptamine and bradykinin in cat dorsal horn neurones activated by noxious Stimuli. Brain Res. III (1976), 197–203.CrossRefGoogle Scholar
  63. 63.
    Reynolds, D. V., Surgery in the rat during electrical analgesia induced by focal brain Stimulation. Science 164 (1969), 444–445.PubMedCrossRefGoogle Scholar
  64. 64.
    Richardson, D. E., Akil, H., Pain reduction by electrical brain Stimulation in man: chronic self-stimulation in the periaqueductal gray matter. J. Neurosurg. 47 (1977), 184–194.PubMedCrossRefGoogle Scholar
  65. 65.
    Rivot, J. P., Chaouch, A., Besson, J. M., Caracteristiques electrophysiologiques et pharmacologiques du controle exerce par le noyau raphe magnus sur la transmission spinale des messages nociceptifs. J. Physiol. (Paris) (in press).Google Scholar
  66. 66.
    Rivot, J. P., Chaouch, A., Besson, J. M., The influence of Naloxone on the C fiber response of dorsal horn neurons and their inhibitory control by raphe magnus Stimulation. Brain Res. 176 (1979), 355–364.PubMedCrossRefGoogle Scholar
  67. 67.
    Ruda, M. A., Autoradiographic examination of the efferent projections of the midbrain central gray in the cat. Ph.D. Dissertation, University of Pennsylvania (1976).Google Scholar
  68. 68.
    Samanin, R., Gumulka, M., Valzelli, L., Reduced effect of morphine in midbrain raphe lesioned rats. Europ. J. Pharmacol. 10 (1970), 339–343.CrossRefGoogle Scholar
  69. 69.
    Sasa, M., Munekiyo, K., Osumi, Y., Takaori, S., Attenuation of morphine analgesia in rats with lesions of the locus coeruleus and dorsal Raphe Nucleus. Europ. J. Pharmacol. 42 (1977), 53–62.CrossRefGoogle Scholar
  70. 70.
    Sasa, M., Munekiyo, K., Takaori, S., Dorsal raphe Stimulation produced inhibitory effect on trigeminal nucleus neurons. Brain Res. 101 (1975), 199–207.CrossRefGoogle Scholar
  71. 71.
    Sessle, B. J., Dubner, R., Greenwood, L. F., Lucier, G. E., Descending in- fluences of periaqueductal gray matter and somatosensory cerebral cortex on neurones in trigeminal brain stem nuclei. Canad. J. Physiol. Pharmacol. 54 (1976), 66–69.CrossRefGoogle Scholar
  72. 72.
    Sewell, R. D. E., Spencer, P. S. J., Modification of the antinociceptive activity of narcotic agonists and antagonists by intraventricular injection of biogenic amines in mice. Brit. J. Pharmacol. 51 (1974), 140P–141P.Google Scholar
  73. 73.
    Sherrington, C. S., Reflexes elicitable in the cat from pinna, vibrissae and jaws. J. Physiol. (Lond.) 51 (1917), 404–431.Google Scholar
  74. 74.
    Snyder, S. H., Simantov, R., The opiate receptor and opioid peptides. J. Neurochem. 28 (1977), 13–20.PubMedCrossRefGoogle Scholar
  75. 75.
    Sparkes, C. G., Spencer, P. S. G., Antinociceptive activity of morphine after injection of biogenic amines in the cerebral ventricles of the conscious rat. Brit. J. Pharmacol. 42 (1971), 230–241.Google Scholar
  76. 76.
    Tenen, S. S., Antagonism of the analgesic effect of morphine and other drugs by p-chlorophenylalanine, a Serotonin depletor. Psychopharmacologia (Berl.) 12 (1968), 278–285.CrossRefGoogle Scholar
  77. 77.
    Vogt, M., The effect of lowering the 5-hydroxytryptamine content of the rat spinal cord on analgesia produced by morphine. J. Physiol. (Lond.) 236 (1974), 483–498.Google Scholar
  78. 78.
    Willis, W. D., Haber, L. H., Martin, R. F., Inhibition of spinothalamic tract cells and interneurons by brainstem Stimulation in the monkey. J. Neurophysiol. 40 (1977), 968–981.PubMedGoogle Scholar
  79. 79.
    Yaksh, T. L., Du Chateau, J. C., Rudy, T. A., Antagonism by methysergide and cinanserin of the antinociceptive action of morphine administered into the periaqueductal gray. Brain Res. 104 (1976), 367–372.PubMedCrossRefGoogle Scholar
  80. 80.
    Yaksh, T. L., Plant, R. L., Rudy, T. A., Studies of the antagonism by raphe lesions of the antinociceptive action of systemic morphine. Eur. J. Pharmacol. 41 (1977), 399–408.PubMedCrossRefGoogle Scholar
  81. 81.
    Yaksh, T. L., Rudy, T. A., Narcotic analgetics: CNS sites and mechanisms of action as revealed by intracerebral injection techniques. Pain 4 (1978), 299–359.PubMedCrossRefGoogle Scholar
  82. 82.
    Yokota, T., Hashimoto, S., Periaqueductal gray and tooth pulp afferent interaction on units in caudal medulla oblongata. Brain Res. 117 (1976), 508–512.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • J.-M. Besson
    • 1
  • J.-L. Oliveras
  1. 1.Unité de Recherches de Neurophysiologie Pharmacologique de l’INSERM (U 161)ParisFrance

Personalised recommendations