Stress Distribution in Overthrusting Slabs and Mechanics of Jura Deformation

  • W. H. Müller
  • K. J. Hsü
Part of the Rock Mechanics / Felsmechanik / Mécanique des Roches book series (ROCK, volume 9)


Our investigations relate the stability to stress-distribution in overthrusting slabs. Finite-element models have been formulated to evaluate the magnitude and orientation of stress within overthrusting slabs under given boundary conditions of displacement. The Mohr-Coulomb criterion has been adopted to define a zone of failure. In addition to a simple model to describe idealized slabs, the tectonic deformation of the Jura decollement has been modelled.

The computations were carried out with a program which enables the simulation of elastic/ideal plastic behavior. For the first simulation the stability of an overthrusting crustal slab is considered, assuming a left-to-right displacement with the right hand edge fixed expect for the lowest 1 km thick layer. The cases of a completely homogeneous slab, of a slab with one layer of lower strength, and of a slab with two low-strength layers, were considered in different simulation experiments. Deformation of the homogeneous body could not produce a clearly defined detachment-surface. In the one-layered block, the low-strength layer acts as a detachment-surface. The ratio of the length of the thrust plate to its thickness is 4/1 (16 km long for a 4 km thick thrust, or 40 km long for a 10 km thick plate) in this test. However, by varying the composition of the layering, the length/thickness ratio of a multiple thrust complex can be 20/1 or 80 km long for a 4 km thickness plate. This ratio is comparable to that observed in the cover nappes and rigid-basement nappe-complexes of the Alps.

In the case of the Jura-overthrust, two different models have been investigated: by rotation on a concave detachment horizon (“distant-push” theory) and subduction of the crystalline basement under the Aare-massif (“underthrusting” theory). As ductile shear-horizon, we assumed a 100-m thick layer of anhydrite. The material constants have been determined by triaxial deformation experiments. The analyses clearly show tha the Jura mountains could hardly have been deformed in the manner postulated by the “distant-push” theory. On the other hand, the assumption of the underthrusting model can result in satisfactory simulation of field observations.


Stress Distribution Critical Shear Stress Molasse Basin Jura Mountain Heat Flow Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, E. M.: The Dynamics of Faulting. Oliver and Boyd, London, 183 p. (1942).Google Scholar
  2. Bock, H.: Vielfache Bruchstrukturen bei einfachen Beanspruchungen. Geol. Rundschau 61 (3), 824–849 (1972).CrossRefMathSciNetGoogle Scholar
  3. Bürgisser, H.: Sedimentologie der oberen Süßwasser-Molasse. Ph. D. Thesis, ETH Zürich (1980).Google Scholar
  4. Buxtorf, A.: Geologische Beschreibung des Weissenstein-Tunnels und seiner Umgebung. Beitr. geol. Karte Schweiz (NF) 21 (1907).Google Scholar
  5. Clark, S. P.: Handbook of Physical Constants. Geol. Soc. Amer. Mem. 97, 587 p. (1966).Google Scholar
  6. Couples, G.: Stress and Shear Fracture (Fault) Patterns. Stress in Earth. Birkhäuser Verlag, Basel, 113–134 (1977).Google Scholar
  7. Dietrich, J. H., Carter, N. L.: Stress History of Folding. Amer. J. Sci. 267, 129–154 (1969).CrossRefGoogle Scholar
  8. Dietrich, J. H., Onat, E. T.: Slow Finite Deformation of Viscous Solids. J. Geophys. Res. 74, 2081–2088 (1969).CrossRefGoogle Scholar
  9. Drucker, D. C., Prager, W.: Soil Mechanics and Plastic Analysis Limit Design. Quart. Appl. Math. 10, 157–165 (1952).MATHMathSciNetGoogle Scholar
  10. Finckh, P.: Wärmeflußmessungen in Randalpenseen. Ph. D. Thesis, ETH Zurich (1976).Google Scholar
  11. Finckh, P.: Heat Flow Measurements in 17 Peri-Alpine Lakes (1980).Google Scholar
  12. Fischer, H., Luterbacher, H.: Das Mesozoikum der Bohrungen Courtion 1 und Altishofen 1. Beitr. geol. Karte Schweiz (N. F.) 115, 1–40 (1963).Google Scholar
  13. Hafner, ‘W.: Stress Distribution and Faulting. Geol. Soc. Amer. Bull. 62, 373–398 (1951).CrossRefGoogle Scholar
  14. Handin, J.: On the Coulomb-Mohr Failure Criterion. J. Geophys. Res. 74 (22), 5343–5348 (1969).CrossRefGoogle Scholar
  15. Hsü, K. J.: Statics and Kinetics of the Glarus Overthrust. Eclog. geol. Hell. 62 (1), 143–154 (1969).Google Scholar
  16. Hsü, K. J.: Thin-Skinned Plate Tectonics During Neo-Alpine Orogenesis. Am. Jour. Sci. 279, 353–366 (1979)Google Scholar
  17. Hubbert, M. K., Rubey, W. W.: Role of Fluid Pressure in Mechanics of Overthrust Folding. Geol. Soc. Amer. Bull. 70, 115–166 (1959).CrossRefGoogle Scholar
  18. Jaeger, J. C.: Elasticity, Fracture, and Flow. Methuen, London (1969).Google Scholar
  19. Kovari, K.: Ein Beitrag zum Bemessungsproblem von Untertagbauten. Schweiz. Bauzeitung 87, 37 (1969).Google Scholar
  20. Kovari, K.: The Elasto-Plastic Analysis in the Design Practice of Underground Openings. Prof. Int. Symp. on Numerical Methods in Soil Mechanics and Rock Mechanics, Karlsruhe, Sept. 1975.Google Scholar
  21. Laubscher, H. P.: Die Fernschubhypothese der Jurafaltung. Eclog. geol. Hely. 54 (1), 221–282 (1961).Google Scholar
  22. Laubscher, H. P.: Geometrical Adjustments During Rotation of a Jura Fold Limb. Tectonophysics 36, 347–365 (1976).CrossRefGoogle Scholar
  23. Laubscher, H. P.: Jura Kinematics and Dynamics. Eclog. geol. Helv. 72 (2), 467–483 (1979).Google Scholar
  24. Müller, W. H.: Simulation von tektonischen Überschiebungen mit Hilfe der Methode der endlichen Elemente. Ph. D. Thesis, ETH Zurich, 91 p. (1975).Google Scholar
  25. Müller, W. H., Briegel, U.: Experimentelle Untersuchungen an Anhydrit aus der Schweiz. Eclog. geol. Helv. 70 (3), 685–699 (1977).Google Scholar
  26. Müller, W. H., Briegel, U.: The Rheological Behavior of Polycrystalline Anhydrite. Eclog. geol. Hell. 71 (2), 397–407 (1978).Google Scholar
  27. Müller, W. H., Briegel, U.: On the Mechanics of the Jura Overthrust. Eclog. geol. Hell. 73 (1) (1980).Google Scholar
  28. Rybach, L., Bodmer, P., Pavoni, N., Müller, St.: Siting Criteria for Heat Extraction from Hot Rock. Pure and Appl. Geophys. 116, 1211–1224 (1978).CrossRefGoogle Scholar
  29. Smoluchowski, M. S.: Some Remarks on the Mechanics of Overthrusting. Geol. Mag., n. s. 6, 204–205 (1909).CrossRefGoogle Scholar
  30. Trümpy, R.: Paleotectonic Evolution of the Central and Western Alps. Bull. Geol. Soc. Amer. 71 (6), 843–908 (1960).CrossRefGoogle Scholar
  31. Trümpy, R.: Die helvetischen Decken der Ostschweiz. Eclog. geol. Helv. 62, 105–142 (1969).Google Scholar
  32. Umbgrove, J. H. F.: Origin of the Jura Mountains. Kon. Akad. Wetenschap. Nederland, Proc. 51, 1019–1062 (1948).Google Scholar
  33. Voight, B., Samuelson, B.: On the Application of Finite-Element Techniques to Problems Concerning Potential Distribution and Stress Distribution Analysis in the Earth Sciences. Pure and Appl. Geophysics 76, 40–55 (1969).Google Scholar
  34. Von Herzen, R. P., Finckh, P., Hsü, K. J.: Heatflow Measurements in Swiss Lakes. J. Geophys. 40, 141–172 (1974).Google Scholar
  35. Zienkiewicz, O. C., Cheung, Y. K.: The Finite Element Method in Structural and Continuums Mechanics. McGraw-Hill, New York (1967).Google Scholar
  36. Zienkiewicz, O. C., Valliappan, S., King, J. P.: Elastoplastic Solutions of Engineering Problems’ Initial Stress; Finite Element Approach. Intern. J. for Num. Method in Eng. 1, 75–100 (1969).CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • W. H. Müller
    • 1
  • K. J. Hsü
  1. 1.Geological InstituteSwiss Federal Institute of Technology, ETH-ZentrumZürichSwitzerland

Personalised recommendations