Skip to main content

Stress Distribution in Overthrusting Slabs and Mechanics of Jura Deformation

  • Conference paper
Tectonic Stresses in the Alpine-Mediterranean Region

Part of the book series: Rock Mechanics / Felsmechanik / Mécanique des Roches ((ROCK,volume 9))

Abstract

Our investigations relate the stability to stress-distribution in overthrusting slabs. Finite-element models have been formulated to evaluate the magnitude and orientation of stress within overthrusting slabs under given boundary conditions of displacement. The Mohr-Coulomb criterion has been adopted to define a zone of failure. In addition to a simple model to describe idealized slabs, the tectonic deformation of the Jura decollement has been modelled.

The computations were carried out with a program which enables the simulation of elastic/ideal plastic behavior. For the first simulation the stability of an overthrusting crustal slab is considered, assuming a left-to-right displacement with the right hand edge fixed expect for the lowest 1 km thick layer. The cases of a completely homogeneous slab, of a slab with one layer of lower strength, and of a slab with two low-strength layers, were considered in different simulation experiments. Deformation of the homogeneous body could not produce a clearly defined detachment-surface. In the one-layered block, the low-strength layer acts as a detachment-surface. The ratio of the length of the thrust plate to its thickness is 4/1 (16 km long for a 4 km thick thrust, or 40 km long for a 10 km thick plate) in this test. However, by varying the composition of the layering, the length/thickness ratio of a multiple thrust complex can be 20/1 or 80 km long for a 4 km thickness plate. This ratio is comparable to that observed in the cover nappes and rigid-basement nappe-complexes of the Alps.

In the case of the Jura-overthrust, two different models have been investigated: by rotation on a concave detachment horizon (“distant-push” theory) and subduction of the crystalline basement under the Aare-massif (“underthrusting” theory). As ductile shear-horizon, we assumed a 100-m thick layer of anhydrite. The material constants have been determined by triaxial deformation experiments. The analyses clearly show tha the Jura mountains could hardly have been deformed in the manner postulated by the “distant-push” theory. On the other hand, the assumption of the underthrusting model can result in satisfactory simulation of field observations.

Contribution No. 145 of the Laboratory of Experimental Geology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, E. M.: The Dynamics of Faulting. Oliver and Boyd, London, 183 p. (1942).

    Google Scholar 

  • Bock, H.: Vielfache Bruchstrukturen bei einfachen Beanspruchungen. Geol. Rundschau 61 (3), 824–849 (1972).

    Article  MathSciNet  Google Scholar 

  • Bürgisser, H.: Sedimentologie der oberen Süßwasser-Molasse. Ph. D. Thesis, ETH Zürich (1980).

    Google Scholar 

  • Buxtorf, A.: Geologische Beschreibung des Weissenstein-Tunnels und seiner Umgebung. Beitr. geol. Karte Schweiz (NF) 21 (1907).

    Google Scholar 

  • Clark, S. P.: Handbook of Physical Constants. Geol. Soc. Amer. Mem. 97, 587 p. (1966).

    Google Scholar 

  • Couples, G.: Stress and Shear Fracture (Fault) Patterns. Stress in Earth. Birkhäuser Verlag, Basel, 113–134 (1977).

    Google Scholar 

  • Dietrich, J. H., Carter, N. L.: Stress History of Folding. Amer. J. Sci. 267, 129–154 (1969).

    Article  Google Scholar 

  • Dietrich, J. H., Onat, E. T.: Slow Finite Deformation of Viscous Solids. J. Geophys. Res. 74, 2081–2088 (1969).

    Article  Google Scholar 

  • Drucker, D. C., Prager, W.: Soil Mechanics and Plastic Analysis Limit Design. Quart. Appl. Math. 10, 157–165 (1952).

    MATH  MathSciNet  Google Scholar 

  • Finckh, P.: Wärmeflußmessungen in Randalpenseen. Ph. D. Thesis, ETH Zurich (1976).

    Google Scholar 

  • Finckh, P.: Heat Flow Measurements in 17 Peri-Alpine Lakes (1980).

    Google Scholar 

  • Fischer, H., Luterbacher, H.: Das Mesozoikum der Bohrungen Courtion 1 und Altishofen 1. Beitr. geol. Karte Schweiz (N. F.) 115, 1–40 (1963).

    Google Scholar 

  • Hafner, ‘W.: Stress Distribution and Faulting. Geol. Soc. Amer. Bull. 62, 373–398 (1951).

    Article  Google Scholar 

  • Handin, J.: On the Coulomb-Mohr Failure Criterion. J. Geophys. Res. 74 (22), 5343–5348 (1969).

    Article  Google Scholar 

  • Hsü, K. J.: Statics and Kinetics of the Glarus Overthrust. Eclog. geol. Hell. 62 (1), 143–154 (1969).

    Google Scholar 

  • Hsü, K. J.: Thin-Skinned Plate Tectonics During Neo-Alpine Orogenesis. Am. Jour. Sci. 279, 353–366 (1979)

    Google Scholar 

  • Hubbert, M. K., Rubey, W. W.: Role of Fluid Pressure in Mechanics of Overthrust Folding. Geol. Soc. Amer. Bull. 70, 115–166 (1959).

    Article  Google Scholar 

  • Jaeger, J. C.: Elasticity, Fracture, and Flow. Methuen, London (1969).

    Google Scholar 

  • Kovari, K.: Ein Beitrag zum Bemessungsproblem von Untertagbauten. Schweiz. Bauzeitung 87, 37 (1969).

    Google Scholar 

  • Kovari, K.: The Elasto-Plastic Analysis in the Design Practice of Underground Openings. Prof. Int. Symp. on Numerical Methods in Soil Mechanics and Rock Mechanics, Karlsruhe, Sept. 1975.

    Google Scholar 

  • Laubscher, H. P.: Die Fernschubhypothese der Jurafaltung. Eclog. geol. Hely. 54 (1), 221–282 (1961).

    Google Scholar 

  • Laubscher, H. P.: Geometrical Adjustments During Rotation of a Jura Fold Limb. Tectonophysics 36, 347–365 (1976).

    Article  Google Scholar 

  • Laubscher, H. P.: Jura Kinematics and Dynamics. Eclog. geol. Helv. 72 (2), 467–483 (1979).

    Google Scholar 

  • Müller, W. H.: Simulation von tektonischen Überschiebungen mit Hilfe der Methode der endlichen Elemente. Ph. D. Thesis, ETH Zurich, 91 p. (1975).

    Google Scholar 

  • Müller, W. H., Briegel, U.: Experimentelle Untersuchungen an Anhydrit aus der Schweiz. Eclog. geol. Helv. 70 (3), 685–699 (1977).

    Google Scholar 

  • Müller, W. H., Briegel, U.: The Rheological Behavior of Polycrystalline Anhydrite. Eclog. geol. Hell. 71 (2), 397–407 (1978).

    Google Scholar 

  • Müller, W. H., Briegel, U.: On the Mechanics of the Jura Overthrust. Eclog. geol. Hell. 73 (1) (1980).

    Google Scholar 

  • Rybach, L., Bodmer, P., Pavoni, N., Müller, St.: Siting Criteria for Heat Extraction from Hot Rock. Pure and Appl. Geophys. 116, 1211–1224 (1978).

    Article  Google Scholar 

  • Smoluchowski, M. S.: Some Remarks on the Mechanics of Overthrusting. Geol. Mag., n. s. 6, 204–205 (1909).

    Article  Google Scholar 

  • Trümpy, R.: Paleotectonic Evolution of the Central and Western Alps. Bull. Geol. Soc. Amer. 71 (6), 843–908 (1960).

    Article  Google Scholar 

  • Trümpy, R.: Die helvetischen Decken der Ostschweiz. Eclog. geol. Helv. 62, 105–142 (1969).

    Google Scholar 

  • Umbgrove, J. H. F.: Origin of the Jura Mountains. Kon. Akad. Wetenschap. Nederland, Proc. 51, 1019–1062 (1948).

    Google Scholar 

  • Voight, B., Samuelson, B.: On the Application of Finite-Element Techniques to Problems Concerning Potential Distribution and Stress Distribution Analysis in the Earth Sciences. Pure and Appl. Geophysics 76, 40–55 (1969).

    Google Scholar 

  • Von Herzen, R. P., Finckh, P., Hsü, K. J.: Heatflow Measurements in Swiss Lakes. J. Geophys. 40, 141–172 (1974).

    Google Scholar 

  • Zienkiewicz, O. C., Cheung, Y. K.: The Finite Element Method in Structural and Continuums Mechanics. McGraw-Hill, New York (1967).

    Google Scholar 

  • Zienkiewicz, O. C., Valliappan, S., King, J. P.: Elastoplastic Solutions of Engineering Problems’ Initial Stress; Finite Element Approach. Intern. J. for Num. Method in Eng. 1, 75–100 (1969).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer-Verlag

About this paper

Cite this paper

Müller, W.H., Hsü, K.J. (1980). Stress Distribution in Overthrusting Slabs and Mechanics of Jura Deformation. In: Scheidegger, A.E. (eds) Tectonic Stresses in the Alpine-Mediterranean Region. Rock Mechanics / Felsmechanik / Mécanique des Roches, vol 9. Springer, Vienna. https://doi.org/10.1007/978-3-7091-8588-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-8588-9_22

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-81578-6

  • Online ISBN: 978-3-7091-8588-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics