Microstructures and Stresses in Naturally Deformed Peridotites

  • Y. Gueguen
  • M. Darot
Conference paper
Part of the Rock Mechanics / Felsmechanik / Mécanique des Roches book series (ROCK, volume 9)


Investigations of the microstructures in naturally deformed peridotites from massifs, basalts and kimberlites have been conducted to identify the deformation mechanisms and to determine the stresses which have produced the plastic flow. Four microstructural parameters can be related to stress: dislocation radius of curvature, free dislocation density, dislocation wall spacing and recrystallized grain size. Theoretical and experimental data on these paleo-stress indicators are discussed. It is concluded that dislocation density is the most reliable one. New experimental data are presented for this parameter. In the present state of our knowledge, only lower bounds on stresses can be estimated. Values of 200 bars are obtained for basalt nodules, 400 bars for kimberlite nodules, 700 bars for the Lanzo massif.


Dislocation Density Resolve Shear Stress Peridotite Xenolith Dislocation Microstructure Peridotite Massif 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ashby, M. F.: The Deformation of Plastically Non Homogeneous Materials, Phil. Mag. 21, 170, 391–424 (1970).Google Scholar
  2. Barret, C. R., Nix, W. D.: Acta Met. 13, 1247–1258 (1965).CrossRefGoogle Scholar
  3. Boudier, F.: Structure and Petrology of the Lanzo Peridotite Massif. Geol. Soc. Amer. Bull. 89, 1574–1591 (1978).CrossRefGoogle Scholar
  4. Boullier, A. M., Nicolas, A.: Classification of Textures and Fabrics of Peridotite Xenoliths from South African Kimberlites. In “Phys. and Chem. of the Earth” 9, 467–475. L. H. Ahrens edit., Pergamon (1975).Google Scholar
  5. Coisy, P., Nicolas, A.: Regional Structure and Geodynamics of the Upper Mantle Beneath the Massif Central. Nature 274, 429–432 (1978).CrossRefGoogle Scholar
  6. Durham, W. B., Goetze, C.: Plastic Flow of Oriented Single Crystals of Olivine. I. Mechanical Data. J. Geophys. Res. 82, 5737–5753 (1977).CrossRefGoogle Scholar
  7. Friedel, J.: Dislocations. Pergamon Press. Oxford (1965).Google Scholar
  8. Goetze, C.: Sheared Lherzolites: from the Point of View of Rock Mechanics. Geology 3, 172–173 (1975).CrossRefGoogle Scholar
  9. Green, H. W. II: Plasticity of Olivine in Peridotites. In “Electron Microscopy in Mineralogy”. 443–464. Wenk edit. Springer, Berlin (1976).CrossRefGoogle Scholar
  10. Green, H. W. II:, Radcliffe, S. V. Deformation Processes in the Upper Mantle, Geophys. Mon. Ser. 16, 139–156 (1972).Google Scholar
  11. Gueguen, Y.: Dislocations in Mantle Peridotite Nodules. Tectonophysics 39, 1–3, 231–254 (1977).Google Scholar
  12. Gueguen, Y.: Dislocations in Naturally Deformed Terrestrial Olivine: Classification, Interpretation, Applications. Bull. Mineral. 102,178–184 (1979 a).Google Scholar
  13. Gueguen, Y.: High Temperature Olivine Creep: Evidence for Control by Edge Dislocations. Geophys. Res. Letters 6, 357–360 (1979 b).Google Scholar
  14. Hirsch, P. B., Howie, A., Nicholson, R. B., Pashley, D. W., Whelan, M. J.: Electron Microscopy of Thin Crystals. London: Butterworths (1965).Google Scholar
  15. Jaoul, O., Gueguen, Y., Michaut, M., Ricoult, D.: A Technique for Decorating Dislocations in Forsterite. Phys. and Chem. of Minerals 5, 15–19, 1979.CrossRefGoogle Scholar
  16. K o h l s t e d t, D. L., Goetze, C.: Low Stress-high Temperature Creep in Olivine Single Crystals. J. Geophys. Res. 79, 14, 2045–2051 (1974).CrossRefGoogle Scholar
  17. MacGregor, I. D.: Petrological and Thermal Structure of the Upper Mantle Beneath South Africa in the Cretaceous. In “Phys. and Chem. of the Earth”, Ahrens edit., 9, 455–466. Pergamon (1975).Google Scholar
  18. Mercier, J. C., Carter, N. L.: Pyroxene Geotherms. J. Geophys. Res. 80, 3349–3362 (1975).CrossRefGoogle Scholar
  19. Mercier, J. C., Nicolas, A.: Textures and Fabrics of Upper Mantle Peridotites as Illustrated by Xenoliths from Basalts. J. of Petrology 16 (2), 454–487 (1975).Google Scholar
  20. Mercier, J. C., Anderson, D. A., Carter, N. L.: Stress in the Lithosphere: Inferences from Steady State Flow of Rocks. In “Stress in the Earth”, Wyss edit., 199–226 (1977).Google Scholar
  21. Nicolas, A.: Stress Estimates from Structural Studies in Some Mantle Peridotites. Phil. Trans. Roy. Soc. London 288, 49–57 (1978).CrossRefGoogle Scholar
  22. Nicolas, A., Poirier, J. P.: Crystalline Plasticity and Flow in Metamorphic Rocks. London: Wiley (1976).Google Scholar
  23. Poirier, J. P., Nicolas, A.: Deformation Induced Recrystallization due to Progressive Misorientation of Subgrains, with Special Reference to Mantle Peridotites. J. of Geology 83, 707–720 (1975).CrossRefGoogle Scholar
  24. Poirier, J. P., Vergobbi, B.: Splitting of Dislocations in Olivine, Cross Slip Controlled Creep and Mantle Rheology. Phys. Earth Planet. Int. 16, 370–378 (1978).Google Scholar
  25. Post, R. L.: The Flow Laws of Mt. Burnett Dunite. Ph. D. Thesis, U. C. L. A. (1973).Google Scholar
  26. Raleigh, C. B., Kirby, S. H.: Creep in the Upper Mantle. Mineral. Soc. Amer. Spec. pap. 3, 113 (1970).Google Scholar
  27. Ricoult, D.: Experimental annealing of a Natural Dunite. Bull. Mineral. 192, 86–91 (1979).Google Scholar
  28. Sellars, C. M.: Recrystallization of Metals During Hot Deformation. Phil. Trans. Roy. Soc. London A 288, 147–158 (1978).Google Scholar
  29. Takeuchi, S., Argon, A. S.: Steady State Andrade Creep of Single Phase Crystals at High Temperature. J. Mat. Sci. 2, 1542–1566 (1976).CrossRefGoogle Scholar
  30. Weertmann, J.: Dislocation Climb Theory of Steady State Creep. Trans. Amer. Soc. Metals, 61–68 (1968).Google Scholar
  31. Zeuch, D., Green, H. W. II: Experimental Deformation of an “Anhydrous” Synthetic Dunite. Bull. mineral. 102, 180–182 (1979).Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Y. Gueguen
    • 1
  • M. Darot
    • 1
  1. 1.Laboratoire de TectonophysiqueNantes CedexFrance

Personalised recommendations