Contributions of α-Adrenoreceptor Blockade to Extra-pyramidal Effects of Neuroleptic Drugs

  • N.-E. Andén
  • Maria Grabowska-Andén
Part of the Journal of Neural Transmission book series (NEURAL SUPPL, volume 16)


Prazosin, phenoxybenzamine and Clozapine, but not Sulpiride, abolished the increase in flexor reflex activity induced by Clonidine and they accelerated the noradrenaline utilization in the brain of rats. These findings indicate that the first three drugs block central α-adrenoreceptors. The α-methyltyrosine-induced disappearance of dopamine in the corpus striatum and the limbic system was decelerated by prazosin and phenoxybenzamine, was accelerated by Sulpiride and was not significantly changed by Clozapine. Prazosin and phenoxybenzamine almost completely reversed the sulpiride induced increase in dopamine utilization. The reduction of the dopamine release following blockade of postsynaptic α-adrenoreceptors might prevent tardive dyskinesia. Blockade of postsynaptic α-adrenoreceptors might also increase the ultimate result of dopamine receptor Stimulation in the corpus striatum but decrease that in the limbic system. Therefore, blockade of α-adrenoreceptors as well as of muscarinic receptors might explain why Clozapine causes less extrapyramidal disturbances than other antipsychotic drugs.


Tyrosine Hydroxylase Muscarinic Receptor Antipsychotic Drug Tardive Dyskinesia Limbic System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andén, N.-E.: Dopamine turnover in the corpus striatum and the limbic system after treatment with neuroleptic and anti-acetylcholine drugs. J. Pharm. Pharmacol. 24, 905–906 (1972).PubMedCrossRefGoogle Scholar
  2. Andén, N.-E., Bédard, P.: Influences of cholinergic mechanisms on the function and turnover of brain dopamine. J. Pharm. Pharmacol. 23, 460–462 (1971).PubMedCrossRefGoogle Scholar
  3. Andén, N.-E., Corrodi, H.,Dahlström. A.,Hökfelt. T.Effects of tyrosine hydroxylase inhibition on the amine levels of central mono- amine neurons. Life Sci. 5, 561–568 (1966 a).CrossRefGoogle Scholar
  4. Andén , N.-E ., Corrodi, H., Fuxe, K., Hökfelt, B., Hökfelt, T., Rydin, C., Svensson, T.: Evidence for a central noradrenaline receptor Stimulation by Clonidine. Life Sci. 9 513–523 (1970).CrossRefGoogle Scholar
  5. Andén,N.-E, Fuxe, K., Hamberger, B., Hökfelt, T: A quantitative study of the nigro-neostriatal dopamine neuron system in the rat. Acta physiol. scand. 67, 306–312 (1966 b).PubMedCrossRefGoogle Scholar
  6. Andén, N.-E., Gomes, C., Persson, B., Trolin, G: R 28935 and prazosin: effects on central and peripheral alpha-adrenoreceptor activity and on blood pressure. Naunyn-Schmiedeberg’s Arch. Pharmacol. 302, 299–306 (1978).CrossRefGoogle Scholar
  7. Andén , N.-E. , Grabowska, M.; Pharmacological evidence for a Stimulation of dopamine neurons by noradrenaline neurons in the brain. Eur. J. Pharmacol. 39, 275–282 (1976).PubMedCrossRefGoogle Scholar
  8. Andén , N.-E. , Grabowska-Andén, M.: Presynaptic and postsynaptic effects of dopamine receptor blocking agents. Adv. Neurol., Vol. 24, pp. 235–245. New York: Raven Press. 1979.Google Scholar
  9. Andén N.-E. Grabowska-Andén, M: Drug effects on pre- and postsynaptic dopamine receptors. Adv. Psychopharmacol. New York: Raven Press. 1980 (in press).Google Scholar
  10. Andén N.-E. Grabowska, M., Strömbom, U.; Different alpha-adreno- reeeptors in the central nervous system mediating biochemical and functional effects of Clonidine and receptor blocking agents. Naunyn- Schmiedeberg’s Arch. Pharmacol. 292, 43–52 (1976).CrossRefGoogle Scholar
  11. Andén N.-E. Stock, G.: Effect of Clozapine on the turnover of dopamine in the corpus striatum and in the limbic system. J. Pharm. Pharmacol. 25, 346–348 (1973).PubMedCrossRefGoogle Scholar
  12. Atack C.V:The determination of dopamine by a modification of the trihydroxyindole fluorimetric assay. Br. J. Pharmacol48 699–714 (1973).PubMedGoogle Scholar
  13. Atack C. V. Magnusson, T.: Individual elution of noradrenaline (together with adrenaline), dopamine, 5-hydroxytryptamine and histamine from a single, strong cation exchange column, by means of mineral acid- organic solvent mixtures. J. Pharm. Pharmacol. 22, 625–627 (1970).PubMedCrossRefGoogle Scholar
  14. Bartholini G.: Differential effect of neuroleptic drugs on dopamine turnover in extrapyramidal and limbic system. J. Pharm. Pharmacol. 28, 429–433 (1976).PubMedCrossRefGoogle Scholar
  15. Bartholini. G.,Haefeli, W., Jalfre, M., Keller, H. H., Pletscher, A.: Effects of Clozapine on cerebral catecholaminergic neurone systems. Br. J. Pharmacol. 46, 736–740 (1972).PubMedGoogle Scholar
  16. Bertler.Å. Carlsson, A., Rosengren, E.: A method for the fluorimetric determination af adrenaline and noradrenaline in tissues. Acta physiol. scand. 44, 273–292 (1958).PubMedCrossRefGoogle Scholar
  17. Bunney B. S. Aghajanian, G. K.: The effect of antipsychotic drugs on the firing of dopaminergic neurons: a reappraisal. In: Antipsychotic Drug Pharmacodynamics and Pharmacokinetics, pp. 305–318. Oxford: Pergamon Press. 1976.Google Scholar
  18. Bürki H. R. Ruch, W., Asper, H Baggiolini M Stille, G: Effect of single and repeated administration of Clozapine on the metabolism of dopamine and noradrenaline in the brain of the rat. Eur. J. Pharmacol. 27, 180–190 (1974).PubMedCrossRefGoogle Scholar
  19. Corrodi, H.,Hanson, L. C. F.: Central effects of an inhibitor of tyrosine hydroxylation. Psychopharmacologia 10, 116–125 (1966).PubMedCrossRefGoogle Scholar
  20. Crane G. E.: Pseudoparkinsonism and tardive dyskinesia. Arch. Neurol. 27, 426–430 (1972).PubMedCrossRefGoogle Scholar
  21. Grabowska-Andén M.: Modification of the amphetamine-induced stereo typy in rats following inhibition of the noradrenaline release by FLA 136. J. Pharm. Pharmacol. 29, 566–567 (1977).PubMedCrossRefGoogle Scholar
  22. Gunne L.-M. Bárány, S: A monitoring test for the liability of neuroleptic drugs to induce tardive dyskinesia. Psychopharmacology63 195–198 (1979).PubMedCrossRefGoogle Scholar
  23. Häggendal J.: An improved method for fluorimetric determination of small amounts of adrenaline and noradrenaline in plasma and tissues. Acta physiol. scand. 59, 242–254 (1963).CrossRefGoogle Scholar
  24. Hippius H:On the relations between antipsychotic and extrapyramidal effects of psychoactive drugs. In: Antipsychotic Drugs: Pharmacodynamics and Pharmacokinetics, pp. 437–445. Oxford: Pergamon Press. 1976.Google Scholar
  25. Jackson D. M. Anden, N.-E., Dahlström, A.: A functional effect of dopamine in the nucleus accumbens and in some other dopamine-rich parts of the rat brain. Psychopharmacologia 45, 139–149 (1975).PubMedCrossRefGoogle Scholar
  26. Maj. J.,Grabowska. M.,Gajda, L.: Effect of apomorphine on motility in rats. Eur. J. Pharmacol. 17, 208–214 (1972).PubMedCrossRefGoogle Scholar
  27. McMillen B. A. Shore, P. A.:Comparative effects of Clozapine and α-adrenoceptor blocking drugs on regional noradrenaline metabolism in rat brain. Eur. J. Pharmacol. 52, 225–230 (1978).PubMedCrossRefGoogle Scholar
  28. Miller R. J. Hiley, C. R.: Anti-muscarinic properties of neuroleptics and drug-induced Parkinsonism. Nature 248, 596–597 (1974).PubMedCrossRefGoogle Scholar
  29. Mogilnicka, E., Braestrup, C.: Noradrenergic influence on the stereotyped behaviour induced by amphetamine, phenethylamine and apomorphine. J. Pharm. Pharmacol. 28, 253–255 (1975).CrossRefGoogle Scholar
  30. Randrup, A., Munkvad, I., Udsen, P.: Aadrenergic mechanisms and amphetamine induced abnormal behaviour. Acta pharmacol. toxicol. 20, 145–157 (1963).CrossRefGoogle Scholar
  31. Sayers A.C. Bürki, H. R., Ruch, W., Asper, H.: Anticholinergic properties of antipsychotic drugs and their relation to extrapyramidal side-effects. Psychopharmacology 51, 15–22 (1976).PubMedCrossRefGoogle Scholar
  32. Snyder S. H. Banerjee, S. P., Yamamura, H. I., Greenberg, D.: Drugs, neurotransmitters and schizophrenia. Science 184, 1243–1253 (1974).PubMedCrossRefGoogle Scholar
  33. Spector, S., Sjoerdsma, A., Udenfriend, S.: Blockade of endogenous nor- epinephrine synthesis by a-methyltyrosine, an inhibitor of tyrosine hydroxylase. J. Pharmacol. exp. Ther. 147, 86–95 (1965).PubMedGoogle Scholar
  34. Stille. G.,Hippius, H: Kritische Stellungnahme zum Begriff der Neu- roleptika (anhand von pharmakologischen und klinischen Befunden mit Clozapin). Pharmacopsychiat. Neur-Psychopharmacol4 182–191 (1971).Google Scholar
  35. Stille, G., Lauener, H., Eichenberger, E.: The pharmacology of 8-chloro-ll- (4-methyl-l-piperazinyl)-5H-dibenzo[b, e] [1,4] diazepine (Clozapine). IL Farmaco, Ed. Pr. 26, 605–625 (1971).Google Scholar
  36. Svensson T. H. Waldeck, B.: On the significance of central noradrenaline for motor activity: experiments with a new dopamine-β-hydroxylase inhibitor. Eur. J. Pharmacol. 7, 278–282 (1969).PubMedCrossRefGoogle Scholar
  37. Zivkovic. B, Guidotti, A., Revueita, A., Costa, E.:Effect of thioridazine, Clozapine and other antipsychotics on the kinetic State of tyrosine hydroxylase and on the turnover rate of dopamine in striatum and nucleus accumbens. J. Pharmacol. exp. Ther. 194, 37–46 (1975).PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • N.-E. Andén
    • 1
    • 2
  • Maria Grabowska-Andén
    • 1
  1. 1.Department of Medical PharmacologyUniversity of UppsalaUppsalaSweden
  2. 2.BiomedicumUppsalaSweden

Personalised recommendations