Advertisement

On the Mechanism of the Antiparkinsonian Action of l-DOPA and Bromocriptine: A Theoretical and Experimental Analysis of Dopamine Receptor Sub- and Supersensitivity

  • L. F. Agnati
  • K. Fuxe
Part of the Journal of Neural Transmission book series (NEURAL SUPPL, volume 16)

Summary

Further advancements in the development of antiparkinsonian drugs are highly dependent on a better understanding of the biochemical changes present in the “supersensitive DA receptors”. The present paper stresses also the importance of the development of behavioural models for studies on supersensitive DA receptors (rotational behaviour in 6-OHDA lesioned rats) and on intact DA receptors, i.e. rotational behaviour in KA lesioned rats. The relevance of heuristic models for DA receptor sub– and supersensitivity is underlined. The pharmacological findings with bromocriptine indicate that its ability to reduce the on-off phenomenon in patients could be due to its longlasting and rather constant activation of supersensitive DA receptors, and its partial DA agonist activity at DA receptors not linked to adenylate cyclase. The concept is introduced that to understand DA receptor sub-supersensitivity it is of help to postulate variations in the numbers of coupled DA receptors as an important factor. The behavioural experiments with elymoclavine further underline this view by indicating increases in the working ränge at supersensitive DA receptors although the amount of agonist is reduced.

Furthermore, the concept has been introduced that the DA receptor supersensitivity development does not depend only on the deficit of the transmitter but possibly also on the deficit of a presynaptically released trophic factor. This factor could play a critical role in the control of the biochemical machinery of the postsynaptic cell, e.g. receptor synthesis, formation of catalytic units and of Compounds which can enhance the coupling between receptors and the biological effector.

The introduction of 1-DOPA in the treatment of Parkinson’s disease was a major break-through in neurology (Birkmayer and Hornykiewicz, 1962; Cotzias et al., 1967). The 1-DOPA therapy could be further improved by combining the 1-DOPA treatment with a peripheral decarboxylase inhibitor (see e.g. Birkmayer et al., 1974; Rinne, 1978). With the combined treatment it became possible to avoid peripheral side-effects of DOPA treatment since peripheral formation of,dopamine (DA) was blocked. In this way only a central accumulation of DA could occur. However, in recent studies it has been noticed that following a 5–7-year treatment with 1-DOPA, the original marked improvement of rigidity, hypokinesia and tremor was reduced or disappeared in a substantial number of parkinsonian patients (see Ludin and Bass-Verrey, 1976; Marsden and Parkes, 1976, 1977; Hornykiewicz, 1974; Rinne, 1978). Furthermore, half of the patients on long-term treatment with 1-DOPA develops on-off phenomena. This phenomenon means that the patient has an on- period characterized by marked hyperkinesias followed by an off- period characterized by marked hypokinesia. The off-period can last for a variable number of hours. Against this background it has been of substantial interest to observe that the dopamine receptor agonist, bromocriptine (CB 154), seems capable of reducing the number of patients exhibiting on-off phenomena on 1-DOPA treatment. Furthermore, bromocriptine produces a further improvement of the motor functions in parkinsonian patients, further reducing rigidity, hypokinesia and tremor (see Calne et al., 1974, 1978; Lieberman et al., 1976, 1979; Marsden and Parkes, 1976, 1977; Parkes et al, 1976).

In the present paper we have tried to increase the understanding of these clinical results by studying the pharmacology of 1-DOPA, bromocriptine (Hökfelt and Fuxe, 1972; Fuxe, 1973; Fuxe et al., 1974; Corrodi et al., 1973; Johnsson et al., 1976) and elymoclavine (see Fuxe et al., 1978 a) and by considering some theoretical aspects on DA receptor sub- and supersensitivity.

Keywords

Dopamine Receptor Kainic Acid Ergot Alkaloid Parkinsonian Patient Dopamine Receptor Agonist 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baldessarini, R. J.: The pathophysiological basis of tardive dyskinesia. Trends Neurosci. 2, 133–135 (1979).CrossRefGoogle Scholar
  2. Birkmayer, W., Hornykiewicz, O.: Der L-Dioxyphenylalanin(L-DOPA-)– Effekt beim Parkinson-Syndrom des Menschen. Arch. Psychiat. Nervenkr. 203, 560–574 (1962).PubMedCrossRefGoogle Scholar
  3. Birkmayer, W., Linauer, W., Mentasti, M., Riederer, P.: Zweijährige Erfahrungen mit einer Kombinationsbehandlung des Parkinson-Syndroms mit L-DOPA und dem Decarboxylasehemmer Benserazid (Ro 4–4602). Wien. med. Wschr. 124, 340–344 (1974).PubMedGoogle Scholar
  4. Burt, D. R., Creese, I., Snyder, S. H.: Properties of 3H-haloperidol and 3H-dopamine binding associated with dopamine receptors in calf brain membranes. Molec. Pharmacol. 12, 631–638 (1976a).Google Scholar
  5. Burt, D. R., Creese, I., Snyder, S. H.: Properties of 3H-haloperidol and 3H-dopamine binding associated with dopamine receptors in calf brain membranes. Molec. Pharmacol. 12, 800–812 (1976b).Google Scholar
  6. Calne, D. B., Plotkin, C., Williams, A. C., Nutt, J. G., Neophytides, A., Teychenne, P. F.: Long-term treatment of parkinsonism with bromocriptine. Lancet 1, 735–738 (1978).PubMedCrossRefGoogle Scholar
  7. Calne, D. B., Teychenne, P. F., Claveria, L. E., Eastman, R., Greenacre, J. K., Petrie, A.: Bromocriptine in Parkinsonism. Br. Med. J. 4, 442–444 (1974).PubMedCrossRefGoogle Scholar
  8. Cotzias, G. C., van Woert, M. H., Schiffer, L. M.: Aromatic amino acids and modification of Parkinsonism. New Engl. J. Med. 276, 374–379 (1967).PubMedCrossRefGoogle Scholar
  9. Corrodi, H., Fuxe, K., Hökfelt, T., Lidbrink, P., Ungerstedt, U.: Effects of ergot drugs on central neurones: evidence for a Stimulation of central dopamine neurons. J. Pharm. Pharmac. 25, 409–412 (1973).CrossRefGoogle Scholar
  10. Creese, L, Burt, D. R., Snyder, S. H.: Dopamine receptor binding enhancement accompanies lesion-induced behavioural supersensitivity. Science 197, 596–598 (1977).PubMedCrossRefGoogle Scholar
  11. Fuxe, K.: Tools in the treatment of Parkinson’s disease: Studies on new types of dopamine receptor stimulating agents. In: Advances in Neurology (Calne, D. B., ed.), pp. 273–279. New York: Raven Press, 1973.Google Scholar
  12. Fuxe, K.: Dopamine receptor agonists in brain research and as therapeutic agents. Trends Neurosci. 2, 1–4 (1979).CrossRefGoogle Scholar
  13. Fuxe, K., Corrodi, H., Hökfelt, T., Lidbrink, P., Ungerstedt, U.: Ergocornine and 2-Br-α-ergocryptine evidence for prolonged dopamine receptor Stimulation. Med. Biol. 52, 121–132 (1974).PubMedGoogle Scholar
  14. Fuxe, K., Fredholm, B. B., Agnati, L. F., Ögren, S.-O., Everitt, J., Jonsson, G., Gustafsson, J.-Å.: Interaction of ergot drugs with central monoamine systems. Pharmacology 16, Suppl. 1, 99–134 (1978a).PubMedCrossRefGoogle Scholar
  15. Fuxe, K., Fredholm, K., Ögren, S.-O., Agnati, L. F., Hökfelt, T., Gustafsson, J.-Å.: Ergot drugs and central monoaminergic mechanisms: a histochemical, biochemical and behavioural analysis. Federation Proc. 37, 2181–2191 (1978b).Google Scholar
  16. Fuxe, K., Ögren, S.-O., Agnati, L. F., Andersson, K., Hall, H., Köhler, C., Fredholm, B. B.: Central monoamine synapses as sites of action for ergot drugs. In: Ergot Alkaloids. New York: Raven Press. In press, 1979 a.Google Scholar
  17. Fuxe, K., Schwarcz, R., Agnati, L. F., Fredholm, B. B., Ögren, S.-O., Köhler, C., Gustafsson, J.-Å.: Actions of ergot derivatives at dopamine synapses. In: Dopaminergic Ergot Derivatives and Motor Function (Fuxe, K., Calne, D.B., eds.), pp. 151–157. Oxford: Pergamon Press. 1979 b.Google Scholar
  18. Goldstein, M., Lew, J. Y., Nakamura, S., Battista, A. F., Lieberman, A., Fuxe, K.: Dopaminephilic properties of ergot alkaloids. Federation Proc. 37, No. 8, 2202–2205 (1978).Google Scholar
  19. Hökfelt, T., Fuxe, K.: On the morphology and the neuroendocrine role of the hypothalamic catecholamine neurons. In: Brain-Endocrine Interaction, Median Eminence: Structure and Function (Knigge, K. M., Scott, D. E., Weindl, A., eds.), pp. 181–223. Basel: Karger. 1972.Google Scholar
  20. Hollenberg, M. D.: Receptor models and the action of neurotransmitters and hormones. In: Neurotransmitter Receptor Binding (Yamamura, H. L, Enna, S. J., Kuhar, M. J., eds.), pp. 13–39. New York: Raven Press. 1978.Google Scholar
  21. Hornykiewicz, O.: The mechanisms of action of L-dopa in Parkinson’s disease. Life Sci. 15, 1249–1259 (1974).PubMedCrossRefGoogle Scholar
  22. Johnson, A. M., Loew, D. M., Bigouret, J. M.: Stimulant properties of bromocriptine on central dopamine receptors in comparison to apomorphine, (·+)-amphetamine and L-dopa. Brit. J. Pharmacol. 56, 59–68 (1976).Google Scholar
  23. Lieberman, A. N., Kupersmith, M., Gopinathan, G., Estey, E., Goldstein, M.: Modification of the “on-off” effect with bromocriptine and lergotrile. In: Dopaminergic Ergot Derivatives and Motor Function (Fuxe, K., Calne, D. B., eds.), pp. 285–295. Oxford: Pergamon Press. 1979.Google Scholar
  24. Lieberman, A., Zolfaghari, M., Boal, D., Hassouri, H., Vogen, B., Battista, A, Fuxe, K., Goldstein, M.: The antiparkinsonian efficacy of bromocriptine. Neurology 26, 405–409 (1976).PubMedGoogle Scholar
  25. Ludin, H. P., Zfoss-Verrej, F.: Study of deterioration in long-term treatment of parkinsonism with L-dopa plus decarboxylase inhibitor. J. Neural Transm. 38, 249–258 (1976).PubMedCrossRefGoogle Scholar
  26. Markstein, R., Herrling, P.L., Bürki, H. R., Ruch, W.: The effect of bromocriptine on the adenylate cyclase and the catecholamine metabolism of the rat brain. J. Neurochem. 31, 1163–1172 (1978).PubMedCrossRefGoogle Scholar
  27. Marsden, C., Parkes, J. D.: “On-off” effects in patients with Parkinson’s disease on chronic levodopa therapy. Lancet 1, 292–296 (1976).PubMedCrossRefGoogle Scholar
  28. Marsden, C. D., Parkes, J. D.: Success and problems of long-term levodopa therapy in Parkinson’s disease. Lancet 1, 345–349 (1977).PubMedCrossRefGoogle Scholar
  29. Miyamoto, T., Battista, A., Goldstein, M., Fuxe, K.: Long-lasting antitremor activity induced by 2-Br-a-ergocryptine in monkeys. J. Pharm. Pharmac. 26, 452–454 (1974).CrossRefGoogle Scholar
  30. Ögren, S.-O., Köhler, C., Fuxe, K., Ängeby, K.: Behavioural effects of ergot drugs. In: Dopaminergic Ergot Derivatives and Motor Function (Fuxe, K., Calne, D.B., eds.), pp. 187–205. Oxford: Pergamon Press. 1979.Google Scholar
  31. Parkes, J. D., de Bono, A. G., Marsden, C. D.: Bromocriptine in Parkinsonism, long-term treatment, dose response and comparison with levodopa. J. Neurol. Neurosurg. Psychiat. 39, 1101–1108 (1976).PubMedCrossRefGoogle Scholar
  32. Rinne, U. K.: Recent advances in research on Parkinsonism. Acta Neurol. Scand. 57, Suppl. 67, 77–113 (1978).Google Scholar
  33. Schwarcz, R., Fuxe, K., Agnati, L. F., Gustafsson, J.-Å.: Effects of bromocriptine on 3H-spiroperidol binding sites in rat striatum. Evidence for actions on dopamine receptors not linked to adenylate cyclase. Life Sci. 23, 465–470 (1978).PubMedCrossRefGoogle Scholar
  34. Schwarcz, R., Fuxe, K., Agnati, L. F., Hökfelt, T., Coyle, J. T.: Rotational behaviour in rats with unilateral striatal kainic acid lesions: A behavioural model for studies on intact dopamine receptors. Brain Res. 170, 485–495 (1979).PubMedCrossRefGoogle Scholar
  35. Trabucchi, M., Spano, P. F., Tonon, G. C., Frattola, L.: Effects of bromocriptine on central dopaminergic receptors. Life Sci. 19, 225–232 (1976).PubMedCrossRefGoogle Scholar
  36. Ungerstedt, U., Arbuthnott, G. W.: Quantitative recording of rotational behaviour in rats after 6-OH dopamine lesions of the nigrostriatal dopamine system. Brain Res. 24, 485–493 (1970).PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • L. F. Agnati
    • 1
  • K. Fuxe
    • 2
  1. 1.Department of Human PhysiologyUniversity of BolognaBolognaItaly
  2. 2.Department of HistologyKarolinska InstitutetStockholm 60Sweden

Personalised recommendations