Kinetics of L-DOPA Metabolism in the Caudate Nucleus of Cats with Ventrotegmental Lesions

  • K. G. Lloyd
  • C. H. Hockmann
  • Lynne Davidson
  • Irene J. Farley
  • O. Hornykiewicz
Part of the Journal of Neural Transmission book series (NEURAL SUPPL, volume 16)


Sixteen days after a unilateral lesion of the ventromedial tegmentum (VMT) of the midbrain, adult cats received an intravenous dose of L-DOPA (20 mg/kg), and the caudate nucleus from each hemisphere was removed at various time intervals thereafter. In the caudate nucleus contralateral to the VMT lesions, DA levels reached 200 °/o of control values within 15 min, and maintained this elevation for at least 2 hours. DA levels in the caudate nucleus ipsilateral to the VMT lesion were much lower than contralateral values; however, they were much higher than those of non-DOPA treated animals with comparable lesions. DA levels in the caudate nucleus of the lesioned hemisphere were directly related to the remaining DOPA de- carboxylase activity. The striatal serotonin concentrations were unchanged after L-DOPA, but an increase in 5-hydroxyindoleacetic acid levels was observed. From these results, we conclude that, (i) in cats with nigrostriatal tract lesions after low doses of L-DOPA comparable to those given to patients with Parkinson’s disease, the bulk of the newly formed DA in the caudate nucleus is contained in nigrostriatal neurons, and (ii) there exists an inverse relationship between the ability of the caudate to synthesize DA and the severity of the nigrostriatal tract lesion.


Caudate Nucleus Parkinsonian Patient Nigrostriatal Tract Lesion Animal Unilateral Lesion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andén, N.-E., Roos, B.-E., Werdinius, B.: On the occurrence of homovanillic acid in brain and cerebrospinal fluid and its determination by a fluorimetric method. Life Sciences 2, 448–458 (1968).CrossRefGoogle Scholar
  2. Bartholini, G., Pletscher, A.: Cerebral accumulation and metabolism of 14C-L-DOPA after selective inhibition of peripheral decarboxylase. J. Pharmacol. Exp. Ther. 161, 14–20 (1968).PubMedGoogle Scholar
  3. Bartholini, G., Da Prada, M., Pletscher, A.: Decrease of cerebral 5-hydroxy- tryptamine by 3, 4-dihydroxyphenylalanine after inhibition of extracerebral decarboxylase. J. Pharm. Pharmac. 20, 219–229 (1968).CrossRefGoogle Scholar
  4. Bernheimer, H., Birkmayer, W., Hornykiewicz, O.: Verteilung des 5-Hydroxy-tryptamin (Serotonin) im Gehirn des Menschen und sein Verhalten bei Patienten mit Parkinson-Syndrom. Klin. Wsch. 39, 1056— 1059 (1961).CrossRefGoogle Scholar
  5. Bertler, A., Falck, B., Owman, Ch., Rosengren, E.: The localization of monoaminergic blood-brain mechanisms. Pharmacol. Revs. 18, 369–385 (1966).Google Scholar
  6. Bogdanski, D. F., Pletscher, A., Brodie, A., Brodie, B. B., Udenfriend, S.: Identification and assay of Serotonin in brain. J. Pharmacol. Exp. Ther. 117, 82–88 (1956).PubMedGoogle Scholar
  7. Calne, D. B.: Parkinsonism. London: Arnold. 1970.Google Scholar
  8. Carlsson, A., Waldeck, B.: A fluorimetric method for the determination of dopamine (3-hydroxytyramine). Acta Physiol. Scand. 44, 293–298 (1958).CrossRefGoogle Scholar
  9. Constantinidis, J., De La Torte, J. C., Tissot, R., Geissbühler, F.: La barriere capillaire pour la L-DOPA dans le cerveau et les differents organes. Psychopharmacologia 15, 75–87 (1969).PubMedCrossRefGoogle Scholar
  10. Dagirmanjian, R., Laverty, R., Mantegazzini, P., Sharman, D. F., Vogt, M.: Chemical and physiological changes produced by arterial infusion of dihydroxyphenylalanine into one cerebral hemisphere of the cat. J. Neurochem. 10, 117–182 (1963).CrossRefGoogle Scholar
  11. Davidson, L., Lloyd, K. G., Dankova, J., Hornykiewicz, O.: L-DOPA treatment in Parkinson’s disease: effect on dopamine and related substances in discrete brain regions. Experientia 27, 1048–1049 (1971).PubMedCrossRefGoogle Scholar
  12. De La Torre, J.C.: The blood-brain barrier for L-DOPA in the hypo- thalamus. J. Neurol. Sci. 12, 77–93 (1971).PubMedCrossRefGoogle Scholar
  13. Dowson, J. H.: Animal models for an enzymic blood-brain barrier mechanism for therapeutically administered L-DOPA. Life Sciences 13, 23–29 (1973).PubMedCrossRefGoogle Scholar
  14. Euler, U. S. Von, Floding, J.: Diagnosis of pheochromocytoma by fluori-metric estimation of adrenaline and noradrenaline in urine. Scand. J. Clin. Lab. Invest. 8, 288–295 (1956).CrossRefGoogle Scholar
  15. Everett, G. M., Borcherding, J. W.: L-DOPA: Effect on concentrations of 5-hydroxytryptamine in brains of mice. Science 168, 849–850 (1970).PubMedCrossRefGoogle Scholar
  16. Goldstein, M., Anagnoste, B., Owen, W. S., Battista, A. F.: The effects of ventromedial tegmental lesions on the disposition of dopamine in the caudate nucleus of the monkey. Brain Research 4, 298–300 (1967).PubMedCrossRefGoogle Scholar
  17. Goldstein, M., Anagnoste, B., Battista, A. F., Nakatani, S., Ogawa, M.: Biochemical aspects of experimentally induced parkinsonism. Neurotransmitters Res. Publ., A.R.N.M.D. 50, 434–437 (1972).Google Scholar
  18. Heller, A., Bhatnagar, R. K., Moore, R. Y.: Selective neuronal control of telencephalic monoamines and enzymes involved in their biosynthesis. In: Progress in Neurogenetics (Barbeau, A., Brünette, J. R., eds.), pp. 283–288. Amsterdam: Excerpta Medica. 1969.Google Scholar
  19. Hockman, C. H., Lloyd, K. G., Farley, I. G., Hornykiewicz, O.: Experi- mental midbrain lesions: neurochemical comparison between the animal model and Parkinson’s disease. Brain Research 35, 613–618 (1971).PubMedCrossRefGoogle Scholar
  20. Hornykiewicz, O.: Dopamine (3-hydroxytyramine) and brain funetion. Pharmacol. Rev. 18, 925–962 (1966).PubMedGoogle Scholar
  21. Hornykiewicz, O.: Physiological, biochemical and pathological background of levodopa and possibilities for the future. Neurology 20, 1–5 (1970).Google Scholar
  22. Karobath, M., Diaz, J. L., Huttunen, M. O.: The effect of L-DOPA on the concentrations of tryptophan, tyrosine and Serotonin in rat brain. Europ. J. Pharmacol. 14, 393–396 (1971).Google Scholar
  23. Kuruma, L, Bartholini, G., Pletscher, A.: L-DOPA induced accumulation of 3-O-methyl-DOPA in brain and heart. Europ. J. Pharmacol. 10, 189–192 (1970).CrossRefGoogle Scholar
  24. Langelier, P., Parent, A., Poirier, L. J.: Decarboxylase activity of the brain capillary walls and parenehyma in the rat, cat and monkey. Brain Research 45, 622–629 (1972).PubMedCrossRefGoogle Scholar
  25. Lloyd, K. G., Hornykiewicz, O.: Parkinson’s disease: Activity of L-DOPA decarboxylase in discrete brain regions. Science 170, 1212–1213 (1970).PubMedCrossRefGoogle Scholar
  26. Lloyd, K. G., Hornykiewicz, O.: Occurrence and distribution of aromatic L-amino acid (L-DOPA) decarboxylase in the human brain. J. Neuro- chem. 19, 1549–1559 (1972).Google Scholar
  27. Lloyd, K. G., Davidson, L., Hornykiewicz, O.: The neurochemistry of Parkinson’s disease: effect of L-DOPA therapy. J. Pharmacol. Exp. Ther. 195, 453–464 (1975).PubMedGoogle Scholar
  28. Lytle, L. D., Hurko, D., Romero, J. A., Cottman, K., Leehey, D., Wurtman, R. J.: The effects of 6-hydroxydopamine pretreatment on the accumulation of DOPA and dopamine in brain and peripheral organs following L-DOPA administration. J. Neural Transm. 33, 63–71 (1972).PubMedCrossRefGoogle Scholar
  29. Owman, Ch., Rosengren, E.: Dopamine formation in brain capillaries and enzymic blood-brain barrier mechanism. J. Neurochem. 14, 547–550 (1967).PubMedCrossRefGoogle Scholar
  30. Nagatsu, T., Yamamoto, T.: Fluorescence assay of tyrosine hydroxylase activity in tissue homogenate. Experientia 24, 1183–1184 (1968).PubMedCrossRefGoogle Scholar
  31. Poirier, L. L., Sourkes, T. L.: Influence of the substantia nigra on the catecholamine content of the striatum. Brain 88, 181–192 (1965).PubMedCrossRefGoogle Scholar
  32. Poirier, L. J., Singh, P., Sourkes, T. L., Boucher, R.: Effect of amines pre- cursors on the concentration of striatal dopamine and Serotonin in cats with and without unilateral brainstem. Brain Research 6, 954–966 (1967).CrossRefGoogle Scholar
  33. Rinne, U. K., Sonninen, V.: Brain catecholamines and their metabolites in parkinsonian patients. Arch. Neurol. 28, 107–110 (1972).CrossRefGoogle Scholar
  34. Rinne, U. K., Sonninen, V., Hyyppa, M.: Effect of L-DOPA on brain monoamines and their metabolites in Parkinson’s disease. Life Sciences I, 10, 549–557 (1971).CrossRefGoogle Scholar
  35. Rinne, U. K., Sonninen, V., Rickkinen, P., Laaksonen, H.: Dopaminergic nervous transmission in Parkinson’s disease. Med. Biol. 52, 208–217 (1974).PubMedGoogle Scholar
  36. Scapagnini, U., Vandenbroeck, R., Schaepdryver, A. D. de: Simultaneous estimation of 5-hydroxytryptamine and 5-hydroxy-indole-3-acetic acid in rat brain. Biochem. Pharmacol. 18, 938–940 (1969).PubMedCrossRefGoogle Scholar
  37. Schaepdryver, A. D. de: Differential fluorimetric estimation of adrenaline and noradrenaline in urine. Arch. Int. Pharmacodyn. 115, 233–245 (1958).Google Scholar
  38. Snider, R. S., Niemer, W. T.: A stereotaxic atlas of the cat brain. Chicago: Univ. of Chicago Press. 1960.Google Scholar
  39. Ungerstedt, U.: 6-Hydroxydopamine induced degeneration of central mono- amine neurons. Europ. J. Pharmacol. 5, 107–110 (1968).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • K. G. Lloyd
    • 1
  • C. H. Hockmann
    • 1
  • Lynne Davidson
    • 1
  • Irene J. Farley
    • 1
  • O. Hornykiewicz
    • 1
  1. 1.Clarke Institute of Psychiatry and Department of PharmacologyUniversity of TorontoTorontoCanada

Personalised recommendations