The Neuropathology of GABA Neurons in Extrapyramidal Disorders

  • K. G. Lloyd
Part of the Journal of Neural Transmission book series (NEURAL SUPPL, volume 16)


Dysfunction of neurons in the extrapyramidal system (EPS) which use GABA as their neurotransmitter can be noted in both degenerative diseases of the EPS and in iatrogenic (i.e. drug-induced) disorders of EPS function. In Huntington’s chorea there is a loss of both GABA neurons and GABA receptors in the striatum; those remaining GABA receptors likely have an altered kinetic profile, with a higher affinity for GABA than the receptors found in the non-Huntington’s brain. In Parkinson’s disease the lower levels of L-glutamic acid decarboxylase observed in the EPS is likely not associated with neuronal cell loss but is likely secondary to the dopamine neuron loss. These alterations in GABA neuron function and the long-term changes associated with chronic L-DOPA therapy may be related to Parkinsonian tremor. The drug-induced dyskinesias (L-DOPA, neuroleptic) appear to be associated with a relative hypo-function of EPS GABA neurons, especially in relation to DA neuron function, whereas in the case of drug- induced Parkinsonism the opposite may be the case. The function and dysfunction of GABA neurons in the EPS cannot be seen as a separate entity, but must be considered in relation to alterations in other EPS neurons, especially dopamine and acetylcholine.


Substantia Nigra Gaba Receptor Glutamic Acid Decarboxylase Gaba Level Gaba System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barbeau, A.: L-DOPA therapy in Parkinson’s disease: a critical review ofnine year’s experience. Canad. Med. Assoc. J. 101, 59–68 (1969).PubMedGoogle Scholar
  2. Bartholini, G., Stadler, H., Gadea-Ciria, M., Lloyd, K. G.: The use of the push-pull cannulla to estimate the dynamics of acetylcholine and catecholamines within various brain areas. Neuropharmacology 15, 515–519 (1976).Google Scholar
  3. Bartholini, G., Scatton, B., Zivkovic, B., Lloyd, K.G.: On the mode of action 3of SL 76 002, a new GABA receptor agonist. In: GABA-Neuro-transmitters, pp. 326–339. Copenhagen: Munksgaard. 1979Google Scholar
  4. Bartholini, G., Lloyd, K.G., Worms, P., Constantinidis, J., Tissot, R.: GABA and GABA-ergic medication: relation to striatal dopamine function and Parkinsonism. In: Parkinson’s Disease, pp. 253–257. New York: Raven Press. 1979 b.Google Scholar
  5. Bernheimer, H., Birkmayer, W., Hornykiewicz, O., Jellinger, K., Seiteiberger, F.: Brain dopamine and the syndroms of Parkinson and Huntington. J. Neurol. Sci. 20, 415–455 (1973).Google Scholar
  6. Bird, E. D., Iversen, L. L.: Huntington’s chorea: post-mortem measurement of glutamic acid decarboxylase, choline acetylase and dopamine in basal ganglia. Brain 97, 457–472 (1974).PubMedCrossRefGoogle Scholar
  7. Calne, D. B., Klawans, H. L.: Pathophysiology and pharmacotherapy of tremor. Pharmacol. Therap. C. 2, 113–123 (1977).Google Scholar
  8. Calne, D.B., Reid, J.L.: Antiparkinsonian drugs: pharmacological and therapeutic aspects. Drugs 4, 49–74 (1972).PubMedCrossRefGoogle Scholar
  9. Cheramy, A, Nieoullon, A, Glowinski, J: Role of GABA-ergic and glycinergic transmission in the substantia nigra in the regulation of dopamine release in the cat caudate nucleus. In: Amino Acids as Chemical Transmitters, pp. 413–423. New York: Plenum. 1978.Google Scholar
  10. Di Chiara, G., Proceddu, Af. L., Morselli, Af., Mulas, M. L., Gessa, G. L.: Strio-nigral and nigro-thalamic GABA-ergic neurons as Output paths for striatal responses. In: GABA-Neurotransmitters, pp. 465–481. Copen- hagen: Munksgaard. 1979.Google Scholar
  11. Dray, A, Straughan, D. W.: Synaptic mechanisms in the substantia nigra. J. Pharm. Pharmacol. 25, 400–405 (1976).CrossRefGoogle Scholar
  12. Enna, S.J., Bennett, J. P., Bylund, D. Snyder, S. H. Bird, Iversen, L. L.: Alteration of brain neurotransmitter binding in Huntington’s chorea. Brain Res. 531–537 (1976).Google Scholar
  13. Enna S. J., Stern, L. Z., Wastek, G. J., Yamamura, H.I. ; Minireview: Neurobiology and pharmacology of Huntington’s disease. Life Sci. 20, 205–212 (1977).PubMedCrossRefGoogle Scholar
  14. Fibiger, H. C.: Organization and plasticity of GABA-ergic neurons in extrapyramidal and limbic struetures of the rat. In: GABA and Other Inhibitory Transmitters. Fayetteville: Ankho 1980 (in press).Google Scholar
  15. Gale, K.:, GABA receptor binding in substantia nigra: alterations induced by surgical and chemical lesions. In: GABA and Other Inhibitory Neurotransmitters. Fayetteville: Ankho. 1980 (in press).Google Scholar
  16. Giambalvo, C., Rosengren, P.; The effect of phospholipases and proteases on the binding of y-aminobutyric acid to junctional complexes of rat cerebellum. Biochem. Biophys. Acta 436, 741–756 (1976).PubMedCrossRefGoogle Scholar
  17. Giorguieff, M. F., Kemel, M. L., Besson, M.J., Glowinski, G.: Involvement of cholinergic and GABA-receptors in the control of dopamine release from rat striatal slices. In: Parkinson’s Disease: Concepts and Prospects, pp. 31–42 Amsterdam: Excerpta Medica. 1977.Google Scholar
  18. Grace, A. A., Bunney, B. S.: Paradoxical GABA excitation of nigral dopaminergic cells: indirect medication through reticulata inhibitory neurons. Europ. J. Pharmacol. 59, 211–218 (1979).CrossRefGoogle Scholar
  19. Greenblatt, D. L., Shader, R. I.; Anticholinergics. New Engl. J. Med. 288, 1215–1219 (1973).Google Scholar
  20. Hockman, C. H., Lloyd, K. G., Farley, I. J., Hornykiewicz, O.: Experi- mental midbrain lesions: neurochemical comparison between the animal model and Parkinson’s disease. Brain Res. 35, 613–618 (1971).PubMedCrossRefGoogle Scholar
  21. Hornykiewicz, O.; Dopamine (3-hydroxytyramine) and brain function Pharmacol. Revs 18, 925–964 (1966).Google Scholar
  22. Hornykiewicz, O., Lloyd, K. G., Davidson, L.: The GABA system, function of the basal ganglia, and Parkinson’s disease. In: GABA in Nervous System Function, pp. 479–485. New York: Raven Press. 1976.Google Scholar
  23. Iversen, L. L., Bird,E D., Spokes, E,. Nicholson, S. H,.Suckling, C.J.: Agonist specificity of GABA binding sites in human brain and GABA in Huntington’s disease and sehizophrenia. In: GABA-Neurotransmitters, pp. 179–190. Copenhagen: Munksgaard. 1979.Google Scholar
  24. Johnston, G. A R., Kennedy, S.M.: GABA receptors and phospholipids. In: Amino Acids as Chemical Transmitters, pp. 507–516. New York: Plenum. 1978.Google Scholar
  25. Lloyd, K G.: Indications for GABA neuron dysfunction in mental disease. In: Enzymes and Neurotransmitters in Mental Disease. New York: Raven Press. 1980 (in press).Google Scholar
  26. Lloyd, K. G.,.Davidson, L : (3H)GABA binding in brains from Huntington’s chorea patients: altered regulation by phospholipids? Science 205, 1147–1149 (1979).PubMedCrossRefGoogle Scholar
  27. Lloyd, K G., Hornykiewicz, O.: Effect of chronic neuroleptic or L-DOPA administration on GABA levels in the rat substantia nigra. Life Sci. 21, 1489–1496 (1977).Google Scholar
  28. Lloyd, K G., Worms, P.; Sustained gamma-aminobutyric acid receptor Stimulation and chronic neuroleptic effects. In: Long-Term Effects of Neuroleptics. New York: Raven Press. 1980 (in press).Google Scholar
  29. Lloyd, K G., Davidson, L., Hornykiewicz, O.: The neurochemistry of Parkinson’s disease: effect of L-DOPA therapy. J. Pharmacol. Exp. Therap. 195, 453–464 (1975).Google Scholar
  30. Lloyd, K G., Möhler, H., Bartholini, G., Hornykiewicz, O.; Pathological alterations in glutamic acid decarboxylase activity in Parkinson’s disease. In: Advances in Parkinsonism, pp. 186–192. Basle: Editiones Roche. 1976Google Scholar
  31. Lloyd, K G., Shemen, L., Hornykiewicz, O.: Distribution of high affinity sodium-independent (3H)-gamma-aminobutyric acid binding in the human brain: alterations in Parkinson’s disease. Brain Res. i27, 269–278 (1977 a).CrossRefGoogle Scholar
  32. Lloyd, K G., Dreksler, S.,Bird, D..- Alterations in 3H-GABA binding inHuntington’s chorea. Life Sci. 2i, 747–754 (1977 b).CrossRefGoogle Scholar
  33. Lloyd, K. G., Shibuya, M., Davidson, L., Hornykiewicz, O.; Chronic neuroleptic therapy: tolerance and GABA systems. In: Non-striatal Dopamine Neurons, pp. 409–415. New York: Raven Press. 1977 c.Google Scholar
  34. McGeer, P.L., McGeer, E.G.; Evidence for glutamic acid decarboxylase- containing interneurons in the neostriatum. Brain Res. 331–335(1975).Google Scholar
  35. McGeer, P. L., McGeer, E. G.: The GABA system and function of the basal ganglia: Huntington’s disease. In: GABA in Nervous System Function, pp. 487–495. New York: Raven Press. 1976.Google Scholar
  36. McGeer, P. L., McGeer, E. G., Wada, J. A.: Glutamic acid decarboxylase in Parkinson’s disease and epilepsy. Neurology 21, 1000–1007 (1971).PubMedGoogle Scholar
  37. Olianas, M. C., De Montis, G. M,. Mulas, G., Tagliamonte, A.: The striatal dopaminergic function is mediated by the inhibition of a nigral non- dopaminergic neuronal system via a striato-nigral GABA-ergic pathway. Europ. J. Pharmacol. 223–232 (1978).Google Scholar
  38. Olsen, R. W., Van Ness, P. C., Tourtellotte, W. W.: Gamma-aminobutyric acid receptor binding curves for human brain regions: comparison of Huntington’s disease and normal. In: Huntington’s Disease, pp. 697–704. New York: Raven Press. 1979.Google Scholar
  39. Perry, T. L.,Hansen, S., Kloster, M.; Huntington’s chorea: deficiency of γ-aminobutyric acid in brain. New Engl. J. Med. 255, 337–342 (1973).CrossRefGoogle Scholar
  40. Reisine, T. D., Beaumont, E. D., Spokes, E,.Yamamura, H. I.:Huntington’s disease: alterations in neurotransmitter receptor binding in the human brain. In: Huntington’s Disease, pp. 717–726. New York: Raven Press. 1979.Google Scholar
  41. Rinne, U. K., Sonninen, V., Riekkinen, P., Laaksonen, H.; Dopaminergic nervous transmission in Parkinson’s disease. Med. Biol. 52, 208–217 (1974)PubMedGoogle Scholar
  42. Rinne, U.k.., Koskinen, V., Laaksonen, H., Lönnenberg, P., Sonninen, V.; GABA receptor binding in the Parkinsonian brain. Life Sci. 22, 2225–2228 (1978).CrossRefGoogle Scholar
  43. Scatton, B., Bartholini, G.; Modulation by GABA of cholinergic transmission in rat brain. In: GABA and Other Inhibitory Neurotransmitters. Fayetteville: Ankho. 1980 (in press).Google Scholar
  44. Scheel-Kruger J., Arnt, J., Magelund, G.; Behavioural Stimulation induced by museimol and other GABA agonists injected into the substantia nigra. Advances in Parkinsonism 351–356 (1977).Google Scholar
  45. Schwartz, W.., Sharp, F. R, Gunn, R. H, Evarts, E V.; Lesions of ascending dopaminergic pathways decrease forebrain glucose uptake. Nature 261, 155–157 (1976).PubMedCrossRefGoogle Scholar
  46. Stahl, W. L., Swanson, P. D.; Biochemical abnormalities in Huntington’s chorea. Neurology 24, 813–819 (1974).PubMedGoogle Scholar
  47. Watkins, J. C.; Pharmacological receptors and general permeability of cell membranes. J.Theoret. Biol. 37–50 (1965).Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • K. G. Lloyd
    • 1
  1. 1.Department of NeuropharmacologySynthélabo-L.E.R.SBagneuxFrance

Personalised recommendations