Interval Methods for Nonlinear Systems

  • R. E. Moore
Part of the Computing Supplementum book series (COMPUTING, volume 2)


Interval methods provide computational tests for the existence or non-existence of a Solution to a given system of nonlinear equations in an n-dimensional rectangle. Tests are also provided for the convergence of certain iterative methods within suitable regions (safe starting regions). Using bisection procedures, we can search an arbitrary n-dimensional rectangle for a safe starting region. Various bisection rules are discussed.


Newton Method Search Procedure Interval Arithmetic Computational Test Interval Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Alefeld, G.: Intervallanalytische Methoden bei nichtlinearen Gleichungssystemen. Technische Universität Berlin, Fachbereich Mathematik (3), Nr. 43. 1978.Google Scholar
  2. [2]
    Alefeld, G., Herzberger, J.: Einführung in die Intervallrechnung. Mannheim: Bibliographisches Institut 1974.MATHGoogle Scholar
  3. [3]
    Hansen, E. (ed.): Topics in Interval Analysis, p. 23. Oxford University Press 1969.MATHGoogle Scholar
  4. [4]
    Hansen, E. (ed.): Interval Forms of Newton’s Method. Computing 20, 153–163 (1978).Google Scholar
  5. [5]
    Jones, S. T.: Searching for Solutions of Finite Nonlinear Systems — An Interval Approach. Ph. D. Thesis, University of Wisconsin-Madison, 1978.Google Scholar
  6. Kantorovich, L. V.: Functional analysis and applied mathematics. Uspehi Mat. Nauk 3, 89–185 (1948). (In Russian.)MATHGoogle Scholar
  7. [7]
    Krawczyk, R.: Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehlerschranken. Computing 4, 187–201 (1969).CrossRefMATHMathSciNetGoogle Scholar
  8. [8]
    Moore, R. E.: Interval Arithmetic and Automatic Error Analysis in Digital Computing. Ph. D. Dissertation, Stanford University, 1962.Google Scholar
  9. [9]
    Moore, R. E.: Interval Analysis. Englewood Cliffs, N.J.: Prentice-Hall 1966.MATHGoogle Scholar
  10. [10]
    Moore, R. E.: A test for existence of solutions to nonlinear systems. SIAM J. Numer. Anal. 14, 611–615 (1977).CrossRefMATHMathSciNetGoogle Scholar
  11. [11]
    Moore, R. E.: A computational test for convergence of iterative methods for nonlinear systems. SIAM J. Numer. Anal. 15, 1194–1196 (1978).CrossRefMATHMathSciNetGoogle Scholar
  12. [12]
    Moore, R. E.: Bounding sets in function spaces with applications to nonlinear operator equations. SIAM Rev. 20, 492–512 (1978).CrossRefMATHMathSciNetGoogle Scholar
  13. [13]
    Moore, R. E.: Methods and Applications of Interval Analysis. Series on Studies in Applied Mathematics (Arnes, W. F., ed.). Philadelphia: SIAM Publications 1979.CrossRefGoogle Scholar
  14. [14]
    Moore, R. E., Jones, S. T.: Safe starting regions for iterative methods. SIAM J. Numer. Anal. 14, 1051–1065 (1977).CrossRefMATHMathSciNetGoogle Scholar
  15. [15]
    Nickel, K.: On the Newton method in interval analysis. MRC Report #1136, Mathematics Research Center, University of Wisconsin-Madison, 1971.Google Scholar
  16. [16]
    Rall, L. B.: A comparison of the existence theorems of Kantorovich and Moore. MRC Report #1944, Mathematics Research Center, University of Wisconsin-Madison, 1979. [SIAM J. Numer. Anal. 17 (1980).]Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • R. E. Moore
    • 1
  1. 1.Computer Sciences DepartmentUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations