Iterative Methods in the Spaces of Rounded Computations

  • Ch. Ullrich
Part of the Computing Supplementum book series (COMPUTING, volume 2)


Numerical algorithms are usually executed in a space over the finite set of floating-point numbers. Numerous properties are missing in such spaces in contrast to mathematical spaces in which we are used to study algorithms. For this reason numerical algorithms show another behaviour than we would expect based on theoretical investigations. This paper summarizes some results for iterative methods, which can be derived directly by algebraic and order properties of the spaces of rounded computations.


Iterative Method Periodic Point Unique Fixed Point Sign Distribution Compatibility Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Braess, D.: Die Konstruktion monotoner Iterations verfahren zur Lösungseinschließung bei linearen Gleichungssystemen. Arch. Rat. Mech. Anal. 9, 97–106 (1962).CrossRefMATHMathSciNetGoogle Scholar
  2. [2]
    Collatz, L.: Funktionalanalysis und numerische Mathematik. Berlin-Göttingen-Heidelberg-New York: Springer 1964.MATHGoogle Scholar
  3. [3]
    Kaucher, E.: Über metrische und algebraische Eigenschaften einiger beim numerischen Rechnen auftretender Räume. Dissertation, Universität Karlsruhe, 1973.Google Scholar
  4. [4]
    Klatte, R.: Zyklisches Enden bei Iterationsverfahren. Dissertation, Universität Karlsruhe, 1975.Google Scholar
  5. [5]
    Klatte, R., Ullrich, Ch.: Consequences of a properly implemented Computer arithmetic for periodicities of iterative methods. Report on the 3rd IEEE Symposium on Computer Arithmetic, Nr. 75CH 1017–3C, Dallas, Texas (1975), pp. 24–32.Google Scholar
  6. [6]
    Klatte, R., Ullrich, Ch.: Zur mathematischen Struktur von Rechnerarithmetiken. MNU 30, 1–8 (1977).MATHGoogle Scholar
  7. [7]
    Kulisch, U.: Grundlagen des numerischen Rechnens — Mathematische Begründung der Rechnerarithmetik. Mannheim: Bibliographisches Institut 1976.MATHGoogle Scholar
  8. Kulisch, U., Miranker, W. L.: Arithmetic Operations in interval spaces. (This volume.)Google Scholar
  9. [9]
    Ortega, J. M., Rheinboldt, W. C.: Iterative Solution of nonlinear equations of several variables. New York-London: Academic Press 1970.MATHGoogle Scholar
  10. [10]
    Ullrich, Ch.: Rundungsinvariante Strukturen mit äußeren Verknüpfungen. Dissertation, Universität Karlsruhe, 1972.Google Scholar
  11. [11]
    Ullrich, Ch.: Blockiterationsverfahren bei schwach zyklischen Abbildungen. ZAMM 59 (1979).Google Scholar
  12. [12]
    Ullrich, Ch.: Über schwach zyklische Abbildungen in nichtlinearen Produkträumen und einige Monotonieaussagen. Aplikace Matematiky 2, 209–234 (1979).MathSciNetGoogle Scholar
  13. [13]
    Wißkirchen, P.: Vergleich intervallarithmetischer Iterationsverfahren. Computing 14, 45–49 (1975).CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Ch. Ullrich
    • 1
  1. 1.Institut für Angewandte MathematikUniversität KarlsruheKarlsruheFederal Republic of Germany

Personalised recommendations