Shorthand Notation for Rounding Errors

  • R. Scherer
  • K. Zeller
Part of the Computing Supplementum book series (COMPUTING, volume 2)


The first modern papers dealing with rounding errors were rather long. Gradually the presentation became more concise. Here we discuss a shorthand notation. It leads almost immediately to basic results concerning polynomials, triangular systems, elimination, and other problems.


Elimination Process Shorthand Notation Point Arithmetic Float Point Arithmetic Triangular System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Ehlich, H., Zeller, K.: Rundefehler bei der Lösung linearer Gleichungen. ZAMM 41, T69-T71 (1961).MATHGoogle Scholar
  2. [2]
    Givens, W.: Numerical computation of the characteristic values of a real Symmetrie matrix. Oak Ridge Nat. Lab. ORNL-1574 (1954).Google Scholar
  3. [3]
    Jörgens, K.: Fehlerabschätzung für die numerische Inversion von Matrizen. ZAMM 40, T15 (1960).MATHGoogle Scholar
  4. [4]
    Von Neumann, J., Goldstine H. H.: Numerical inverting of matrices of high order. Bull. Amer. Math. Soc. 53, 1021–1099 (1947).CrossRefMATHMathSciNetGoogle Scholar
  5. [5]
    Reimer, M.: Bounds for the Horner sums. SIAM J. Numer. Anal. 5, 461–469 (1968).CrossRefMATHMathSciNetGoogle Scholar
  6. [6]
    Reinsch, C.: Die Behandlung von Rundungsfehlern in der numerischen Analysis. Jahrbuch Überblicke Mathematik 1979, pp. 43–62. Mannheim-Wien-Zürich: Bibliographisches Institut 1979.Google Scholar
  7. [7]
    Stewart, N. F., Jensen F.: Solution numerique des problemes matriciels. Les Presses de l’Universite de Montreal: 1975.Google Scholar
  8. Stummel, F.: Rounding error analysis of elementary numerical algorithms. (This volume.)Google Scholar
  9. [9]
    Turing, A. M.: Rounding-off errors in matrix processes. Quart. J. Mech. 1, 287–308 (1948).CrossRefMATHMathSciNetGoogle Scholar
  10. [10]
    Wilkinson, J. H.: Error analysis of direct methods of matrix inversion. J. Assoc. Comp. Mach. 8, 281–330 (1961).CrossRefMATHMathSciNetGoogle Scholar
  11. [11]
    Wilkinson, J. H.: Rundungsfehler. Berlin-Heidelberg-New York: Springer 1969.MATHGoogle Scholar
  12. [12]
    Wilkinson, J. H.: Modern error analysis. SIAM Rev. 13, 548–568 (1971).CrossRefMATHMathSciNetGoogle Scholar
  13. [13]
    van der Sluis, A.: Syllabus toegepaste analyse. Rijks-Universiteit, Utrecht, 1969.Google Scholar
  14. [14]
    van Veldhuizen, M.: A note on partial pivoting and Gaussian elimination. Numer. Math. 29, 1–10 (1977).CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • R. Scherer
    • 1
  • K. Zeller
  1. 1.Mathematisches InstitutUniversität TübingenTübingenFederal Republic of Germany

Personalised recommendations