Advertisement

Introduction to Quark Confinement in QCD

Part of the Acta Physica Austriaca book series (FEWBODY, volume 21/1979)

Abstract

Because of
  1. (i)

    the explanatory power of the quark model in the phenomenological analysis of experimental elementary particle physics,

     
  2. (ii)

    the unprecedented precision of the predictions of quantum electrodynamics (QED)

     
  3. (iii)

    the esthetic appeal of the geometry of gauge fields

    we consider nowadays a gauge theory of interacting quarks as the most promising design of the dynamics of hadrons.

     

Keywords

Gauge Theory Partition Function Wilson Loop Continuum Limit Gauge Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H.Fritzsch, M.Gell-Mann, XVI.International Conference on High-Energy Physics, Chicago-Batavia (1972), Vol.2, p.135 (J.D.Jackson et al., eds., NAL (1972)).Google Scholar
  2. H.Fritzsch, M.Gell-Mann, H.Leutwyler, Phys.Lett. 47B (1973) 365.Google Scholar
  3. S.Weinberg, Phys.Rev.Lett. 31 (1973) 494;CrossRefADSGoogle Scholar
  4. Phys. Rev. D8 (1973) 4482.Google Scholar
  5. D.J.Gross, F.Wilczek, Phys.Rev. D8 (1973) 3633 and ibidem D9 (1974) 980.ADSGoogle Scholar
  6. R.Dashen, Proceedings of the 1975 International Symposium on Lepton and Photon Interactions at High Energies, Stanford (1975), p.981 (W.I.Kirk, ed., SLAC (1975)).Google Scholar
  7. [2]
    G.’t Hooft, Nucl. Phys. B33 (1971) 173;Google Scholar
  8. Nucl. Phys. B35 (1971) 167.Google Scholar
  9. [3]
    K.G. Wilson, J.B.Kogut, Phys. Repts. 12C (1974) 75.CrossRefGoogle Scholar
  10. [4]
    M.Böhm, H.Joos, M.Krammer a) Nuovo Cim. 7A(1972) 21; Nucl.Phys.B51 (1973)397.Google Scholar
  11. M.Böhm, H.Joos, M.Krammer b) in Recent Developments in Mathematical Physics (P.Urban ed.) (Springer Verlag, Wien and New York, 1973) p.p. 3–116Google Scholar
  12. M.Böhm, H.Joos, M.Krammer c) TH-1949 CERN.Google Scholar
  13. [5]
    E. Eichten, K. Gottfried, T. Kinoshita, J. Kogut, K.D. Lane, T.M. Yani, Phys.Rev. Lett. 34 (1975) 369.CrossRefADSGoogle Scholar
  14. [6]
    G. Bhanot, S. Rudaz, Phys. Lett. 78B (1978) 119.Google Scholar
  15. [7]
    J.D. Bjorken, S.J. Brodsky, Phys. Rev. D1 (1970) 1416.Google Scholar
  16. J.D. Bjorken, in “Current-Induced Reactions”, Springer Verlag Berlin, Heidelberg, New York (1975) p. 93.Google Scholar
  17. [8]
    R.F. Schwitters et al., Phys.Rev.Lett. 35 (1975) 1320;CrossRefADSGoogle Scholar
  18. G.Hanson et al., Phys.Rev.Lett. 35 (1975) 1609; G. Hanson, SLAC PUB 2118 (1978).Google Scholar
  19. Ch. Berger et al., Phys. Lett. 78B (1978) 176; Phys. Lett. 81B (1979) 410; see also G. Flügge, this school.Google Scholar
  20. [9]
    L. Susskind, Hamburg-Konferenz 1977, p.895. J. Kogut, L. Susskind, Phys. Rev. D9 (1973) 2273. G. Parisi, Phys. Rev. Dll (1975) 970.Google Scholar
  21. [10]
    J.A. Swieca, Phys. Rev. D13 (1976) 312. D. Buchholz, K. Fredenhagen (statement proven only for abelian gauge fields!).Google Scholar
  22. [11]
    G. Mack, DESY 77/58.Google Scholar
  23. G. Mack, Phys.Lett. 78B (1978) 263.Google Scholar
  24. [12]
    B. Schroer, G. Mack, private discussions.Google Scholar
  25. [13]
    G.’t Hooft, Nucl. Phys. B138 (1978) 1.CrossRefADSGoogle Scholar
  26. G. Mack, Phys. Lett. 78B (1978) 263.Google Scholar
  27. [14]
    K. Wilson, in New Developments in Quantum Field Theory and Statistical Mechanics.Google Scholar
  28. [15]
    K. Wilson, Phys. Rev. D10 (1974) 2445.Google Scholar
  29. J.M. Drouffe, C. Itzykson, Phys. Rep. 38C (1978) 133.CrossRefADSMathSciNetGoogle Scholar
  30. [16]
    R.D. Parks, ed., “Superconductivity” (Marcel Dekker, N.Y. (1969)), ch. 2.Google Scholar
  31. [17]
    H.B. Nielsen, P.Oleson, Nucl. Phys. B61 (1973) 45. B. Zumino, CERN preprint TH 1779 (1973). Y. Nambu, Phys. Rev. D10 (1974) 4262.Google Scholar
  32. [18]
    A.Chodos, R.L. Jaffe, K. Johnson, C.B. Thorn, V.F. Weisskopf, Phys.Rev. D9 (1974) 3471. C.G.Callan, R.F.Dashen, D.J.Gross, Phys.Lett. 78B (1978) 307.Google Scholar
  33. [19]
    J.Schwinger, Phys.Rev. 128 (1962) 2425;CrossRefMATHADSMathSciNetGoogle Scholar
  34. Theoretical Physics, Trieste Lectures, 1962, p. 89, I.A.E.A., Vienna (1963).Google Scholar
  35. J.H. Lowenstein, J.A. Swieca, Ann.Phys.68(1971)172. See also: J.Wess, Lectures at the IV.Int. Univ.Wochen für Kernphysik, Schladming 1965.Google Scholar
  36. P. Becher, H.Joos, DESY 77/43, Proceedings of the 5th International Winter Meeting on Fundamental Physics (Candanchu 1977 ).Google Scholar
  37. [20]
    H.A. Kramers, Rapports du 8e Conseil Solvay (1948) p.241.(R.Stoops Brussels 1950 ).Google Scholar
  38. [21]
    H.G. Loos, J. Math. Phys. 8 (1967) 2114.Google Scholar
  39. E. Lubkin, Ann. Phys. (NY) 23 (1963) 233.CrossRefADSMathSciNetGoogle Scholar
  40. T.T. Wu, C.N. Yang, Phys. Rev. D12 (1975) 3845.CrossRefADSMathSciNetGoogle Scholar
  41. [22]
    G.’t Hooft, unpublished.Google Scholar
  42. D.J. Gross, F. Wilczek, Phys. Rev. Lett. 30 (1973), Phys. Rev. D8 (1973) 3633; D9 (1974) 980.Google Scholar
  43. H.D. Politzer, Phys. Rev. Lett. 30 (1973) 1346Google Scholar
  44. H. Georgi, H.D. Politzer, Phys. Rev. D9 (1974) 416; D. Bailin, A. Love, and D. Nanopoulos, Nuov.Cim. Lett. 9 (1974) 501.Google Scholar
  45. [23]
    K.G.Wilson, Phys.Rev.D10 (1.974) 2445, Rev. Mod.Google Scholar
  46. Phys. 47 (1975) 773.Google Scholar
  47. [24]
    W. Drechsler, M.E. Mayer, “Fibre Bundle Techniques in Gauge Theories”, Lecture Notes in Physics, Vol.67 (A. Böhm, J.D. Dollard, eds., Springer Berlin (1977)).Google Scholar
  48. [25] Textbooks are:(a)
    E.Cartan: Differentialformen, Mannheim, Bibliograph.Institut 1974Google Scholar
  49. Textbooks are:(b) I. Singer, J.A. Thorpe, Lecture Notes on Elementary Topology and Geometry. BerlinHeidelberg-New York, Springer 1967.Google Scholar
  50. [26]
    R.Balian, J.M. Drouffe, C.Itzkyson, Phys. Rev. Dli (1975) 2098.Google Scholar
  51. T. Yoneya, Phys. Rev. D18 (1978) 1174.Google Scholar
  52. A. Casher, DESY 78/43.Google Scholar
  53. [27]
    M. Lüscher, Phys. Lett. 78B (1978) 465.Google Scholar
  54. A. D’Adda, P. Di Vecchia and M. Lüscher, Nucl.Google Scholar
  55. Phys. B146 (1978) 63 and DESY 78/75 (1978).Google Scholar
  56. H. Eichenherr, Nucl. Phys. B146 (1978) 215.CrossRefADSGoogle Scholar
  57. V. Golo and A. Perelomov, ITEP preprints (1978).Google Scholar
  58. [28]
    J.M. Drouffe, Phys. Rev. D18 (1978) 1174.Google Scholar
  59. Textbooks on Algebraic Topology, f.i. P.S.Google Scholar
  60. Aleksandrov, Combinatorial Topology ( Gray Lock, New York, 1956 ).Google Scholar
  61. [29]
    Look for “De Rham Cohomology” in the textbook I. Singer, J.A. Thorpe, Ref. 125].Google Scholar
  62. [30]
    K. Wilson, Phys. Rev. D10 (1974) 2445.Google Scholar
  63. A.M. Polyakov, Phys. Lett. 59B (1975) 82.MathSciNetGoogle Scholar
  64. R. Balian, J.M. Drouffe, C. Itzykson, Phys. Rev.D10 (1974) 3376, ibid. Dll 2098 (1975) 2104.Google Scholar
  65. [31]
    Superconductivity, Ed. R.D. Park (Marcel Bekker Inc. NY 1969 ) Vol. II, ch.6 and 14.Google Scholar
  66. [32]
    For an introduction: S. Coleman, Erice Lectures 1977.Google Scholar
  67. [33]
    A. Belavin, A. Polyakov, A. Schwartz, Y. Tyupkin, Phys. Lett. 59B (1975) 85.MathSciNetGoogle Scholar
  68. [34]
    A.S. Schwartz, Physics Letters 67B (1977) 172. Atiya et al., Proc. Nat. Acad. Scienc. 74 (1977) 2662.Google Scholar
  69. R. Jackiw, C. Nohl, C. Rebbi, Phys. Rev. D15 (1977) 1642.Google Scholar
  70. C.W. Bernard, N.H. Christ, A.H. Guth, C.J. Weinberg, Phys. Rev. D16 (1977) 2967.Google Scholar
  71. [35]
    G.’t Hooft, unpublished. R. Jackiw et al. Ref.[34].Google Scholar
  72. [36]
    E.F. Corrigan, D.B. Fairlie, S.Templeton, P. Goddard, Nucl. Phys. B140 (1978) 31.Google Scholar
  73. [37]
    A.M. Polyakov, Nucl. Phys. B120 (1977) 429.CrossRefADSMathSciNetGoogle Scholar
  74. R. Jackiw, C. Rebbi, Phys. Rev. Lett. 37 (1976) 172.CrossRefADSGoogle Scholar
  75. M. Creutz, T.N. Tudron, Phys. Rev. 16 (1976) 2978.Google Scholar
  76. [38]
    Instanton configurations on the lattice are discussed by J. Glimm, P. Jaffe, Comm. Math. Phys. 56 (1977) 195.CrossRefGoogle Scholar
  77. [39]
    K. Wilson, Phys. Rev. 010 (1974) 2445.Google Scholar
  78. [40]
    W. Fischler, CERN TH 2321 (1977). Th. Appelquist, M. Dine, BNL 23511.Google Scholar
  79. [41]
    For an early Review: G.F. Newell, E.W. Montroll, Rev. Mod. Phys. 25 (1973) 353. References [30].Google Scholar
  80. M. Creutz, Rev. Mod. Phys. 50 (1978) 561.CrossRefADSMathSciNetGoogle Scholar
  81. [42]
    J.M. Drouffe, Phys. Rev. D18 (1978) 1174.Google Scholar
  82. [43]
    K. Osterwalder, E. Seiler, Ann. Phys. (NY) 110 (1978) 440.CrossRefADSMathSciNetGoogle Scholar
  83. G.F. De Angelis, D. de Falco, F. Guerra, Lett. Nuov. Cim. 19 (1977) 55.Google Scholar
  84. [44]
    J. Glimm, A. Jaffe, Comm. Math. Phys. 51 (1976) 1.CrossRefADSMathSciNetGoogle Scholar
  85. [45]
    H.G. Dosch, V.F. Müller, Phys. Lett. 74B (1978) 241.Google Scholar
  86. [46]
    A.A. Migdal, Zh. Eksp. Teor. Fiz. 69 (1975) 810, 69 (1975) 1477, (Sov. Phys. 42 (1975) 413, 42 (1975) 743 ).Google Scholar
  87. [47]
    The critical dimension d for the Abelian gauge group is discussed by T. Banks, R. Myerson, J. Kogut, Nucl. Phys. B129 (1977) 493 and by J. Glimm, A. Jaffe Ref. [38].Google Scholar
  88. [48]
    L.D. Kadanoff, Physics 2 (1966) 263; Rev, mod. Phys. 49 (1977) 267.MathSciNetGoogle Scholar
  89. K.G.Wilson, Rev. Mod. Phys. 47 (1975) 773.CrossRefADSGoogle Scholar
  90. [49]
    A.A. Migdal, ref. [46].Google Scholar
  91. B.E. Baaquie, SLAC-PUB 1964.Google Scholar
  92. [50]
    B.M. McCoy, T.T. Wu, The Two-Dimensional Ising Model, Harvard University Press, Cambridge (Mass.) (1973), and literature quoted there.Google Scholar
  93. [51]
    D. Isaacson, Comm. Math. Phys. 53 (1977) 257.MATHGoogle Scholar
  94. [52]
    A.M. Polyakov, Nucl. Phys. B120 (1977) 429.CrossRefADSMathSciNetGoogle Scholar
  95. [53]
    G.’t Hooft, Phys. Rev. D14 (1976) 3432Google Scholar
  96. Erratum: Phys. Rev. D18 (1978) 2199.Google Scholar
  97. [54]
    C. Callan, R. Dashen, D. Gross, Phys. Rev. D17 (1978) 2717.Google Scholar
  98. [55]
    V.A. Fateev, I.V. Frolov and A.S. Schwarz, ITEP preprint (1979). B. B.rg, M. Löscher, DESY 79 /17.Google Scholar
  99. [56]
    A.D’Adda, P. Di Vecchia, M. Löscher, Nucl. Phys.B.Google Scholar
  100. G. Lazarides, DESY 79/01.Google Scholar
  101. [57]
    Coty, F. Banks, S. Raby, S. Susskind, D.R. JonesGoogle Scholar
  102. P.N. Scharbach, D.K. Sinclair, Phys. Rev. D15 (1977) 1111.Google Scholar
  103. [58]
    M. Löscher, Comm. Math. Phys. 54 (1977) 283.Google Scholar
  104. [59]
    H. Suura, DESY 79/25.Google Scholar
  105. S. Mandelstam, Phys. Rev. 175 (1968) 1580.Google Scholar
  106. Y. Nambu, Phys. Lett. 80B (1979) 372.Google Scholar
  107. T. Matsumoto, Univ. of Tokyo Preprint, UT-Komaba 78–10.Google Scholar
  108. H. Leutwyler and J. Stern, Orsay preprint 1978 IPNO/TH 7.Google Scholar
  109. A.M. Polyakov, Phys. Lett. 82B (1979) 247.Google Scholar
  110. These authors consider dynamical equations based on string operators for 4-dimensional QCD and QED.Google Scholar
  111. [60]
    A. Casher, J. Kogut, L. Susskind, Phys. Rev. Lett. 31 (1973) 792.CrossRefADSGoogle Scholar
  112. [61]
    P. Becher, H. Joos (in preparation).Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • H. Joos
    • 1
  1. 1.Deutsches Elektronen-Synchrotron DESYHamburg 52Germany

Personalised recommendations