Advertisement

Chemistry and Biochemistry of γ-Glutamyl Derivatives from Plants Including Mushrooms (Basidiomycetes)

  • T. Kasai
  • P. O. Larsen
Part of the Fortschritte der Chemie organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products book series (FORTCHEMIE (closed), volume 39)

Abstract

More than 70 γ-glutamyl derivatives of amino acids and amines have been isolated from plants, including mushrooms (Basidiomycetes), during the last twenty years, and it has been shown that these compounds often predominate in the fraction of free amino acids and other amphoteric plant constituents giving positive ninhydrin reactions. The present review describes the structures and distribution of these compounds and the methods used for their isolation and identification. Special emphasis is laid on the differences in chemical behaviour of γ-glutamyl derivatives and α-dipeptides with glutamic acid as the amino- and as the carboxy-terminal. Furthermore, what little is known about the biochemistry, especially the enzymology, of γ-glutamyl derivatives in plants is described and compared with the available information on glutamine and glutathione.

Keywords

Glutamic Acid Free Amino Acid Glutamine Synthetase Allium Cepa Allium Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Acree, T.E., and C.Y. Lee: Kinetic study of the cyclization of l-glutamine to 2-pyrrolidone-5-carboxylic acid in a model system. J. Agric. Food Chem. 23, 828 (1975).CrossRefGoogle Scholar
  2. 2.
    Amar, L., and L. Reinhold: Loss of membrane transport ability in leaf cells and release of protein as a result of osmotic shock. Plant Physiol. 51, 620 (1973).CrossRefGoogle Scholar
  3. 3.
    Anderson, D.G., H.A. Stafford, E.E. Conn, and B. Vennesland: The distribution in higher plants of NADP+-linked enzyme systems capable of reducing glutathione. Plant Physiol. 27, 675 (1953).CrossRefGoogle Scholar
  4. 4.
    Arai, S., M. Yamashita, M. Nogughi, and M. Fujimaki: Tastes of l-glutamyl oligopeptides in relation to their chromatographic properties. Agric. Biol. Chem. 37, 151 (1973).CrossRefGoogle Scholar
  5. 5.
    Archibald, R.M.: Chemical characteristics and physiological roles of glutamine. Chem. Rev. 37, 161 (1945).CrossRefGoogle Scholar
  6. 6.
    Asen, S., J.F. Thompson, C.J. Morris, and F. Irreverre: Isolation of β-amino-isobutyric acid from bulbs of Iris tingitana var. Wedgewood. J. Biol. Chem. 234, 343 (1959).Google Scholar
  7. 7.
    Augusti, K.T.: Chromatographic identification of certain sulfoxides of cysteine present in onion (Allium cepa Linn.) extract. Curr. Sci. 45, 863 (1976).Google Scholar
  8. 8.
    Austin, S.J., and S. Schwimmer: l-γ-Glutamyl peptidase activity in sprouted onion. Enzymologia 40, 273 (1971).Google Scholar
  9. 9.
    Barrow, M.V., C.F. Simpson, and E.J. Miller: Lathyrism. A review. Quart. Rev. Biol. 49, 101 (1974).CrossRefGoogle Scholar
  10. 10.
    Barsley, E.A.: Correlation of the configuration of some sulphoxides with (+)- S-methyl-l-cysteine S-oxide. Tetrahedron 24, 3747 (1968).CrossRefGoogle Scholar
  11. 11.
    Beecham, A.F.: The action of ammonia and other bases on γ-methyl and γ-ethyl l-glutamate. J. Amer. Chem. Soc. 76, 4615 (1954).CrossRefGoogle Scholar
  12. 12.
    Bell, E.A.: Associations of ninhydrin-reacting compounds in the seeds of 49 species of Lathyrus. Biochem. J. 83, 225 (1962).Google Scholar
  13. 13.
    Bell, E.A., and A.S.L. Tirimanna: Associations of amino acids and related compounds in the seeds of forty-seven species of Vicia: their taxonomic and nutritional significance. Biochem. J. 97, 104 (1965).Google Scholar
  14. 14.
    Bergmann, L., and H. Rennenberg: Efflux und Produktion von Glutathion in Suspensionskulturen von Nicotiana tabacum. Z. Pflanzenphysiol. 88, 175 (1978).Google Scholar
  15. 15.
    Bielinska-Czarnecka, M.: Ninhydrin-reacting substances from apple spurs. J. Sci. Food Agr. 14, 527 (1963).CrossRefGoogle Scholar
  16. 16.
    Birt, L.M., and F.J.R. Hird: The uptake and metabolism of amino acids by slices of carrot. Biochem. J. 70, 277 (1958).Google Scholar
  17. 17.
    Birt, L.M., and F.J.R. Hird: Kinetic aspects of the uptake of amino acids by carrot tissue. Biochem. J. 70, 286 (1958).Google Scholar
  18. 18.
    Black, D.K., and S.R. Landor: Allenes. Part XIX. Synthesis of (±)-hypoglycin A and configuration of the natural isomer. J. Chem. Soc. (C) 1968, 228.Google Scholar
  19. 19.
    Boeck. D., and W. Grosch: Glutathion-Dehydrogenase (EC 1.8.5.1) aus Weizen- mehl. Reindarstellung und Eigenschaften. Z. Lebensm.-Unters.-Forsch. 162, 243 (1976).CrossRefGoogle Scholar
  20. 20.
    Bonnet, R., P. Niviere et V. Labeyrie: Caractérisation d’amino-acides sulfoxidés dans la gaine et les limbes d’Allium porum. C.R. Acad. Sci., Ser. D 279, 1919 (1974).Google Scholar
  21. 21.
    Brandner, G., and A.I. Virtanen: Isolierung und Synthese von γ-Hydroxy-l- Glutamin. Acta Chem. Scand. 17, 2563 (1963).CrossRefGoogle Scholar
  22. 22.
    Bray, H.H., S.P. James, I.M. Raffan, and W.V. Thorpe: The enzymic hydrolysis of glutamine and its spontaneous decomposition in buffer solutions. Biochem. J. 44, 625 (1949).Google Scholar
  23. 23.
    Camp, W.H.: Glutathione in plants. Science 69, 458 (1929).CrossRefGoogle Scholar
  24. 24.
    Carnegie, P.R.: Isolation of a homologue of glutathione and other acidic peptides from seedlings of Phaseolus aureus. Biochem. J. 89, 459 (1963).Google Scholar
  25. 25.
    Carnegie, P.R.: Structure and properties of a homologue of glutathione. Biochem. J. 89, 471 (1963).Google Scholar
  26. 26.
    Carson, J.F., and F.F. Wong: Isolation of (+) S-methyl-l-cysteine sulfoxide and of (+) S-n-propyl-l-cysteine sulfoxide from onions as their N-2,4-dinitrophenyl derivatives. J. Org. Chem. 26, 4997 (1961).CrossRefGoogle Scholar
  27. 27.
    Casimir, J., J. Jadot et M. Renard: Séparation et caractérisation de la N-éthyl-γ-glutamine à partir de Xerocomus badius. Biochim. Biophys. Acta 39, 462 (1960).CrossRefGoogle Scholar
  28. 28.
    Cheung, Y.S., and P.S. Nobel: Amino acid uptake by pea leaf fragments. Specificity, energy sources, and mechanism. Plant Physiol. 52, 633 (1973).CrossRefGoogle Scholar
  29. 29.
    Chibnall, A.C., and R.G. Westall: The estimation of glutamine in the presence of asparagine. Biochem. J. 26, 122 (1932).Google Scholar
  30. 30.
    Crocomo, O.J., and L. Fowden: Amino acid decarboxylases of higher plants. The formation of ethylamine. Phytochemistry 9, 537 (1970).CrossRefGoogle Scholar
  31. 31.
    Dabrowska, T.: The isolation and identification of γ-l-glutamyl-l-glutamine from tillering nodes with roots of Dactylis glomerata. Bull. Acad. Pol. Sci., Ser. Sci. Biol. 19, 95 (1971).Google Scholar
  32. 32.
    Dalgaard, L.: G. c. m. s. of γ-glutamyl derivatives, saccharopine, and aspergillo-marasmines. Adv. Mass Spectroscopy 7, 1644 (1978).Google Scholar
  33. 33.
    Dalgarno, L., and F.R.J. Hird: Increase in the process of accumulation of amino acids in carrot slices with prolonged aerobic washing. Biochem. J. 76, 209 (1960).Google Scholar
  34. 34.
    Daniels, E.G., R.B. Kelly, and J.W. Hinman: Agaritine: an improved isolation procedure and confirmation by synthesis. J. Amer. Chem. Soc. 83, 3333 (1961).CrossRefGoogle Scholar
  35. 35.
    Dardenne, G.A.: Recherche, isolement et structure de nouveaux acides aminés libres dans des végétaux. Gembloux, pp. I–XII + 1–130 (1976).Google Scholar
  36. 36.
    Dardenne, G., J. Casimir, and H. Sørensen: γ-l-Glutamyl-l-pipecolic acid in Gleditsia caspica. Phytochemistry 13, 1515 (1974).CrossRefGoogle Scholar
  37. 37.
    Dardenne, G., J. Casimir, and H. Sørensen: 2(S),3(S)-3-hydroxy-4-methyleneglutamic acid from Gleditsia caspica. Phytochemistry 13, 2195 (1974).CrossRefGoogle Scholar
  38. 38.
    Dardenne, G.A., and P. Thonart: γ-Glutamylphenylalanine in Dolichos seeds. Phytochemistry 12, 473 (1973).CrossRefGoogle Scholar
  39. 39.
    Dardenne, G.A., P. Thonart, E. Otoul et R. Marechal: Étude chimiotaxonomique dans les genres Macrotyloma, Dolichos et Pseudovigna. Phytochemistry 12, 1983 (1973).CrossRefGoogle Scholar
  40. 40.
    Dineen, R.W., and D.O. Gray: Improved synthesis and purification of N4-ethyl-l-asparagine. Org. Prep. Proced. Int. 9, 39 (1977).CrossRefGoogle Scholar
  41. 41.
    Dunnill, P.M., and L. Fowden: γ-l-Glutamyl-β-pyrazol-l-yl-l-alanine, a peptide from Cucumber seeds. Biochem. J. 86, 388 (1963).Google Scholar
  42. 42.
    Dunnill, P.M., and L. Fowden: The amino acids of seeds of the Cucurbitaceae. Phytochemistry 4, 933 (1965).CrossRefGoogle Scholar
  43. 43.
    Dunnill, P.M., and L. Fowden: The amino acids of the genus Astragalus. Phytochemistry 6, 1659 (1967).CrossRefGoogle Scholar
  44. 44.
    Dupuy, H.P., and J.G. Lee: The toxic component of the singletary pea (Lathyrus pusillus). J. Amer. Pharm. Ass. 45, 236 (1956).CrossRefGoogle Scholar
  45. 45.
    Dwek, R.A.: Nuclear magnetic resonance (N.M.R.) in biochemistry, p. 154. Oxford: Clarendon Press. 1973.Google Scholar
  46. 46.
    Elliott, W.H.: Isolation of Glutamine synthetase and glutamyl-transferase from green peas. J. Biol. Chem. 201, 661 (1953).Google Scholar
  47. 47.
    Eloff, J.N., and L. Fowden: The isolation of hypoglycin A and related compounds from Billia hippocastanum. Phytochemistry 9, 2423 (1970).CrossRefGoogle Scholar
  48. 48.
    Esterbauer, H., and D. Grill: Seasonal variation of glutathione and glutathione reductase in needles of Picea abies. Plant Physiol. 61, 119 (1978).CrossRefGoogle Scholar
  49. 49.
    Fölsch, G.: Synthesis of phosphopeptides. V. Further dipeptides, tripeptides and O-phosphorylated derivatives of l-serine. Acta Chem. Scand. 20, 459 (1966).CrossRefGoogle Scholar
  50. 50.
    Fosker, A.P., and H.D. Law: l-Glutamyl-γ-aminobutyric acid and related compounds. J. Chem. Soc. 1965, 7305.Google Scholar
  51. 51.
    Fowden, L.: A new asparagine derivative, N4-(2-hydroxyethyl)-l-asparagine from Bryony (Bryonia dioica). Biochem. J. 81, 154 (1961).Google Scholar
  52. 52.
    Fowden, L.: The chemistry and metabolism of recently isolated amino acids. Annu. Rev. Biochem. 33, 173 (1964).CrossRefGoogle Scholar
  53. 53.
    Fowden, L.: The acidic amino acids of tulip. Isolation of γ-ethylideneglutamic acid. Biochem. J. 98, 57 (1966).Google Scholar
  54. 54.
    Fowden, L.: Amino acid complement of plants. Phytochemistry 11, 2271 (1972).CrossRefGoogle Scholar
  55. 55.
    Fowden, L., D. Lewis, and H. Tristram: Toxic amino acids. Their action as antimetabolites. Advan. Enzymol. 29, 89 (1967).Google Scholar
  56. 56.
    Fowden, L., and H.M. Pratt: Cyclopropylamino acids of the genus Acer. Distribution and biosynthesis. Phytochemistry 12, 1677 (1973).CrossRefGoogle Scholar
  57. 57.
    Fowden, L., H.M. Pratt, and A. Smith: Nitrogenous constituents of Billia hippocastanum and Acer pseudoplatanus. Phytochemistry 11, 3521 (1972).CrossRefGoogle Scholar
  58. 58.
    Fowden, L., P.M. Scopes, and R.N. Thomas: Optical rotatory dispersion and circular dichroism. Part LXX. The circular dichroism of some less common amino acids. J. Chem. Soc. 1971 (C), 833.Google Scholar
  59. 59.
    Fowden, L., and A. Smith: Newly characterized amino acids from Aesculus californica. Phytochemistry 7, 809 (1968).CrossRefGoogle Scholar
  60. 60.
    Fowden, L., and A. Smith: Peptides from Blighia sapida seed. Phytochemistry 8, 1043 (1969).CrossRefGoogle Scholar
  61. 61.
    Fowden, L., A. Smith, D.S. Millington, and R.C. Sheppard: Cyclopropane amino acids from Aesculus and Blighia. Phytochemistry 8, 437 (1969).CrossRefGoogle Scholar
  62. 62.
    Foyer, C.H., and B. Halliwell: The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133, 21 (1977).CrossRefGoogle Scholar
  63. 62a.
    Freeman, G.G., and R.J. Whenham: Thiopropanol S-oxide, alkenylthiosulfinates and thiosulfonates: simulation of flavor components of Allium species. Phytochemistry 15, 187 (1976).CrossRefGoogle Scholar
  64. 63.
    Frisch, D.M., P.M. Dunnill, A. Smith, and L. Fowden: The specificity of amino acid biosynthesis in the Cucurbitaceae. Phytochemistry 6, 921 (1967).CrossRefGoogle Scholar
  65. 64.
    Fujii, J., and M. Izawa: γ-Glutamyl transpeptidase in green asparagus (Asparagus officinalis). Agric. Biol. Chem. 31, 767 (1967).CrossRefGoogle Scholar
  66. 65.
    Fujiwara, S., G. Formicka-Kozlowska, and H. Kozlowski: Conformational study of glutathione by NMR. Bull. Chem. Soc. Jap. 50, 3131 (1977).CrossRefGoogle Scholar
  67. 66.
    Fukuda, M., T. Ogawa, and K. Sasaoka: Optical configuration of γ-glutamylalanine in pea seedlings. Biochim. Biophys. Acta 304, 363 (1973).CrossRefGoogle Scholar
  68. 67.
    Fukuda, M., A. Tokumura, T. Ogawa, and K. Sasaoka: D-Alanine in germinating Pisum sativum seedlings. Phytochemistry 12, 2593 (1973).CrossRefGoogle Scholar
  69. 68.
    Furuyama, T., T. Yamashita, and S. Senoh: The synthesis of l-theanine. Bull. Chem. Soc. Jap. 37, 1078 (1964).CrossRefGoogle Scholar
  70. 69.
    Gigliotti, H.J., and B. Levenberg: γ-Glutamyl transferase of Agaricus bisporus. J. Biol. Chem. 239, 2274 (1964).Google Scholar
  71. 70.
    Gilbert, J.B., V.E. Price, and J.P. Greenstein: Effect of anions on the non- enzymatic desamidation of glutamine. J. Biol. Chem. 180, 209 (1949).Google Scholar
  72. 71.
    Gmelin, R., and P.K. Hietala: S-[β-Carboxy-isopropyl]-l-Cystein, eine neue Aminosäure aus den Samen von Acacia millefolia und Acacia willardiana (Mimosaceae). Hoppe-Seyler’s Z. physiol. Chem. 322, 278 (1960).CrossRefGoogle Scholar
  73. 72.
    Gmelin, R., H. Luxa, K. Roth, and G. Höfle: Dipeptide precursor of odour in Marasmius species. Phytochemistry 15, 1717 (1976).CrossRefGoogle Scholar
  74. 73.
    Goore, M.Y., and J.F. Thompson: γ-Glutamyl transpeptidase from kidney bean fruit. I. Purification and mechanism of action. Biochim. Biophys. Acta 132, 15 (1967).Google Scholar
  75. 74.
    Goore, M.Y., and J.F. Thompson: γ-Glutamyl transpeptidase from kidney bean fruit. II. Studies on the activating effect of sodium citrate. Biochim. Biophys. Acta 132, 27 (1967).Google Scholar
  76. 75.
    Granroth, B.: Biosynthesis and decomposition of cysteine derivatives in onion and other Allium species. Ann. Acad. Fenn., Ser. A2 (1970), No. 154.Google Scholar
  77. 76.
    Gray, D.O., and L. Fowden: N-Ethyl-l-asparagine: a new amino-acid amide from Ecballium. Nature 189, 401 (1961).CrossRefGoogle Scholar
  78. 77.
    Gray, D.O., and L. Fowden: α-(Methylenecyclopropyl)glycine from Litchi seeds. Biochem. J. 82, 385 (1962).Google Scholar
  79. 78.
    Greenstein, J.P., and M. Winitz: Chemistry of the Amino Acids. New York: Wiley. 1961.Google Scholar
  80. 79.
    Grove, M.D., D. Weisleder, and M.E. Daxenbichler: Pinnatanine and oxy-pinnatanine, novel amino acid amides from Staphylea pinnata. Tetrahedron 29, 2715 (1973).CrossRefGoogle Scholar
  81. 80.
    Guthrie, J.D.: Isolation of glutathione from potato tubers treated with ethylene chlorohydrin. J. Amer. Chem. Soc. 54, 2566 (1932).CrossRefGoogle Scholar
  82. 81.
    Halliwell, B., and C.H. Foyer: Properties and physiological function of a glutathione reductase purified from spinach leaves by affinity chromatography. Planta 139, 9 (1978).CrossRefGoogle Scholar
  83. 82.
    Hamilton, P.B., and R.R. Tarr: Gasometric determination of glutamine amino acid carboxyl N in plasma and tissue filtrates by the ninhydrin-CO2 method. J. Biol. Chem. 158, 375 (1945).Google Scholar
  84. 83.
    Hanes, C.S., F.J.R. Hird, and F.A. Isherwood: Synthesis of peptides in enzymic reactions involving glutathione. Nature 166, 288 (1950).CrossRefGoogle Scholar
  85. 84.
    Harington, C.R., and T.H. Mead: The synthesis of glutathione. Biochem. J. 29, 1602 (1935).Google Scholar
  86. 85.
    Harrington, H.M., and I.K. Smith: Cysteine transport into cultured tobacco cells. Plant Physiol. 60, 807 (1977).CrossRefGoogle Scholar
  87. 86.
    Hasegawa, M., N. Fukuda, H. Higuchi, S. Noguchi, and I. Matsubara: The studies on the γ-glutamylpeptides in l-glutamic acid fermentation broths. Part I. Agric. Biol. Chem. 41, 49 (1977).CrossRefGoogle Scholar
  88. 87.
    Hasegawa, M., and I. Matsubara: γ-Glutamylpeptide formative activity of Coryne-bacterium glutamicum by the reverse reaction of the γ-glutamylpeptide hydrolytic enzyme. Agric. Biol. Chem. 42, 371 (1978).CrossRefGoogle Scholar
  89. 88.
    Hasegawa, M., and I. Matsubara: The mechanism of the formation of γ-glutamylpeptides during l-glutamic acid fermentation contributed solely by γ-glutamyltranspeptidase. Agric. Biol. Chem. 42, 383 (1978).CrossRefGoogle Scholar
  90. 89.
    Hashizume, T.: Amino acids in tea. II. Synthesis of related compounds of theanine. Nippon Nogei Kagaku Kaishi 25, 129 (1951). (In Japanese with English summary.)Google Scholar
  91. 90.
    Hassall, C.H., and D.I. John: Constitution of hypoglycin B. Tetrahedron Lett. 1959, 7.Google Scholar
  92. 91.
    Hassall, C.H., and D.I. John: Amino acids and peptides. III. Constitution of hypoglycin B. J. Chem. Soc. 1960, 4112.Google Scholar
  93. 92.
    Hassall, C.H., and K. Reyle: Hypoglycin A and B, two biologically active polypeptides from Blighia sapida. Biochem. J. 60, 334 (1955).Google Scholar
  94. 93.
    Hatanaka, S., Y. Niimura, and K. Taniguchi: l-2-Aminohex-4-ynoic acid: A new amino acid from Tricholomopsis rutilans. Phytochemistry 11, 3327 (1972).CrossRefGoogle Scholar
  95. 94.
    Hatfield, G.M., and J.P. Schaumberg: Isolation and structural studies of coprine, the disulfiram-like constituent of Coprinus atramentarius. Lloydia 38, 489 (1975).Google Scholar
  96. 95.
    Haystead, A.: Glutamine synthetase in the chloroplasts of Vicia faba. Planta 111, 271 (1973).CrossRefGoogle Scholar
  97. 96.
    Hendley, D.D., and E.E. Conn: Enzymic reduction and oxidation of glutathione by illuminated chloroplasts. Arch. Biochem. Biophys. 46, 454 (1953).CrossRefGoogle Scholar
  98. 97.
    Higgins, C.F., and J.W. Payne: Peptide transport by germinating barley embryos: Evidence for a single common carrier for di- and oligopeptides. Planta 138, 217 (1978).CrossRefGoogle Scholar
  99. 98.
    Hoda, Y., T. Watanabe, O. Oka, and T. Saeki: Glutathione-containing liquids from embryo buds. Japan Kokai 76, 141, 899 (1976) (in Japanese).Google Scholar
  100. 99.
    Hoda, Y., T. Watanabe, O. Oka, and T. Saeki: Preparation method of glutathione-copper salt from embryo buds. Japan Kokai 76, 141, 900 (1976) (in Japanese).Google Scholar
  101. 100.
    Höfle, G., R. Gmelin, H. Luxa, M. N’Galamulume-Treves, and S. Hatanaka: Struktur der Lentinsäure: 2-(γ-Glutamylamino)-4,6,8,10,10-pentaoxo-4,6,8,10-tetra-thiaundecansäure. Tetrahedron Lett. 1976, 3129.Google Scholar
  102. 101.
    Hörhammer, L., H. Wagner, M. Seitz. und Z.J. Vejdelek: Zur Wertbestimmung von Knoblauchpräparaten. 1. Mitteilung: Chromatographische Untersuchungen über die genuinen Inhaltstoffe von Allium sativum L. Pharmazie 23, 462 (1968).Google Scholar
  103. 102.
    Holt, C.V., und W. Leppla: Die Konstitution von Hypoglycin A und B. Hoppe-Seyler’s Z. physiol. Chem. 313, 276 (1958).CrossRefGoogle Scholar
  104. 103.
    Hopkins, F.G.: On glutathione. A reinvestigation. J. Biol. Chem. 84, 269 (1929).Google Scholar
  105. 104.
    Hopkins, F.G., and E.J. Morgan: Appearance of glutathione during the early states of germination of seeds. Nature 152, 288 (1943).CrossRefGoogle Scholar
  106. 105.
    Hopkins, F.G., and E.J. Morgan: Distribution of glyoxylase and glutathione. Biochem. J. 39, 320 (1945).Google Scholar
  107. 106.
    Hunter, G., and B.A. Eagles: Glutathione — A critical study. J. Biol. Chem. 72, 147 (1927).Google Scholar
  108. 107.
    Ishikawa, Y., S. Hasegawa, T. Kasai, and Y. Obata: Changes in amino acid composition during germination of soybean. IV. Identification of α- and γ-glutamyl-aspartic acid. Agrie. Biol. Chem. 31, 490 (1967).CrossRefGoogle Scholar
  109. 108.
    Ito, K., and L. Fowden: New characterizations of amino acids and γ-glutamyl peptides from Acacia georginae seed. Phytochemistry 11, 2541 (1972).CrossRefGoogle Scholar
  110. 109.
    Itoh, M.: Peptides. I. Selective protection of α- or sidechain carboxyl groups of aspartic and glutamic acid. A facile synthesis of β-aspartyl and γ-glutamyl peptides. Chem. Pharm. Bull. 17, 1679 (1969).CrossRefGoogle Scholar
  111. 110.
    Iwami, K., K. Yasumoto, and H. Mitsuda: Enzymic cleavage of cysteine sulfoxide in Lentinus edodes. Agrie. Biol. Chem. 39, 1947 (1975).CrossRefGoogle Scholar
  112. 111.
    Iwami, K., K. Yasumoto, K. Nakamura, and H. Mitsuda: Properties of γ-glutamyl-transferase from Lentinus edodes. Agrie. Biol. Chem. 39, 1933 (1975).CrossRefGoogle Scholar
  113. 112.
    Iwami, K., K. Yasumoto, K. Nakamura, and H. Mitsuda: Reactivity of Lentinus γ-glutamyltransferase with lentinic acid as the principal endogenous substrate. Agrie. Biol. Chem. 39, 1941 (1975).CrossRefGoogle Scholar
  114. 113.
    Izaddost, M., B.G. Harris, and R.W. Gracy: Structure and toxicity of alkaloids and amino acids of Sophora secundiflora. J. Pharm. Sci. 65, 352 (1976).CrossRefGoogle Scholar
  115. 114.
    Jadot, J., J. Casimir et G. Maghuin: Identification de la l(+)cystathionine dans Boletus erythropus. Bull. Soc. Roy. Sci. Liège 40, 355 (1971).Google Scholar
  116. 115.
    Jadot, J., J. Casimir et M. Renard: Séparation et caractérisation du l(+)-γ-(p-hydroxy)anilide de l’acide glutamique à partir de Agaricus hortensis. Biochim. Biophys. Acta 43, 322 (1960).CrossRefGoogle Scholar
  117. 116.
    Jansen, E.F., and R. Jang: Cysteine and glutathione in orange juice. Arch. Biochem. Biophys. 40, 358 (1952).CrossRefGoogle Scholar
  118. 117.
    Jeschkeit, H., und G. Losse: Peptidsynthesen in der Aminodicarbonsäurereihe. Z. Chem. 5, 81 (1965).CrossRefGoogle Scholar
  119. 118.
    Jocelyn, P.C.: Biochemistry of the SH-group. London-New York: Academic Press. 1972.Google Scholar
  120. 119.
    Jöhl, A., und W.G. Stoll: Zur Konstitution von Hypoglycin B. Helv. Chim. Acta 42, 156 (1959).CrossRefGoogle Scholar
  121. 120.
    Jöhl, A., und W.G. Stoll: Synthese von γ-l-Glutamyl-hypoglycin A (Hypoglycin B). Helv. Chim. Acta 42, 716 (1959).CrossRefGoogle Scholar
  122. 121.
    Jung, G., E. Breitmaier, und W. Voelter: Dissociationsgleichgewichte von Glutathion. Einer Fourier-Transform-13C-NMR spektroskopische Untersuchung der pH- Abhängigkeit der Ladungsverteilung. Eur. J. Biochem. 24, 438 (1972).CrossRefGoogle Scholar
  123. 122.
    Jung, G., E. Breitmaier, W. Voelter, T. Keller und C. Tänzer: Fourier-Transform- 13C-NMR-Spektroskopie biologisch aktiver Cysteinpeptide. Angew. Chem. 82, 882 (1970).CrossRefGoogle Scholar
  124. 123.
    Kakimoto, Y., A. Kanazawa, T. Nakajima, and I. Sano: Isolation of γ-l-glutamyl- l-β-aminoisobutyric acid from bovine brain. Biochem. Biophys. Acta 100, 426 (1965).CrossRefGoogle Scholar
  125. 124.
    Kanamori, T., and H. Matsumoto: Glutamine synthetase from rice plant roots. Arch. Biochem. Biophys. 125, 404 (1972).CrossRefGoogle Scholar
  126. 125.
    Kanamaru, K., K. Kato, and M. Noguchi: Isolation and identification of γ-l- glutamyl-l-glutamic acid from tobacco cells in suspension culture. Agrie. Biol. Chem. 38, 2285 (1974).CrossRefGoogle Scholar
  127. 126.
    Kasai, T., Y. Ishikawa, and Y. Obata: Changes in amino acid composition during germination of soybean. II: Identification of two γ-glutamyl peptides and their change during germination. Agrie. Biol. Chem. 30, 979 (1966).CrossRefGoogle Scholar
  128. 127.
    Kasai, T., Y. Ishikawa, Y. Obata, and T. Tsukamoto: Changes in amino acid composition during germination of soybean. I. Changes in free amino acids, several nitrogen compounds and total amino acids. Agric. Biol. Chem. 30, 973 (1966).CrossRefGoogle Scholar
  129. 128.
    Kasai, T., and P.O. Larsen: Acta Chem. Scand. B 33, 213 (1979).CrossRefGoogle Scholar
  130. 129.
    Kasai, T., P.O. Larsen, and H. Sorensen: Free amino acids and γ-glutamyl peptides in Fagaceae. Phytochemistry 17, 1911 (1978).CrossRefGoogle Scholar
  131. 130.
    Kasai, T., and Y. Obata: Changes in amino acid compositions during germination of soybean. Part III. Changes in γ-glutamyltranspeptidase activity. Agric. Biol. Chem. 31, 127 (1967).CrossRefGoogle Scholar
  132. 131.
    Kasai, T., and S. Sakamura: Distinction between α- and γ-glutamyl dipeptides by means of NMR spectrometer and amino acid analyzer. Agric. Biol. Chem. 37, 685 (1973).CrossRefGoogle Scholar
  133. 132.
    Kasai, T., and S. Sakamura: Nuclear magnetic resonance spectra of glutamic acid containing dipeptides in relation to sequence determination. Agric. Biol. Chem. 37, 2155 (1973).CrossRefGoogle Scholar
  134. 133.
    Kasai, T., and S. Sakamura: Differences in NMR spectra between some α- and γ-glutamyl dipeptides. Agric. Biol. Chem. 38, 1257 (1974).CrossRefGoogle Scholar
  135. 134.
    Kasai, T., and S. Sakamura: Infrared spectra of α- and γ-glutamyl dipeptides. Nippon Nogei Kagaku Kaishi 48. 521 (1974) (in Japanese with English summary).CrossRefGoogle Scholar
  136. 135.
    Kasai, T., and S. Sakamura: NMR-spectra of α- and γ-L-glutamyl-α-amino-isobutyric acid and some related compounds. Agric. Biol. Chem. 39, 239 (1975).CrossRefGoogle Scholar
  137. 136.
    Kasai, T., and S. Sakamura: Elution behaviour of γ-l-glutamyl-l-aspartic acid during ion-exchange chromatography. J. Chromatogr. 103, 189 (1975).CrossRefGoogle Scholar
  138. 137.
    Kasai, T., and S. Sakamura: NMR and IR spectra and elution behaviors during ion exchange chromatography of glutamic acid-containing dipeptides in relation to sequence determination. J. Fac. Agric. Hokkaido Univ. 58, 283 (1975).Google Scholar
  139. 138.
    Kasai, T., S. Sakamura, S. Inagaki, and R. Sakamoto: Isolation and identification of γ-glutamyl-γ-glutamylmethione from green gram seed. Agric. Biol. Chem. 36, 2621 (1972).CrossRefGoogle Scholar
  140. 139.
    Kasai, T., S. Sakamura, S. Ohashi, and H. Kumagai: Amino acid composition of soybean. V. Changes in free amino acids, ethanolamine and two γ-glutamylpeptides content during the ripening period of soybean. Agric. Biol. Chem. 34, 1848 (1970).CrossRefGoogle Scholar
  141. 140.
    Kasai, T., S. Sakamura, and R. Sakamoto: Amino acid composition of green gram (Phaseolus radiatus var. typicus). I. Isolation and identification of N-carboxymethyl- β-alanine and four γ-glutamyl peptides. Agric. Biol. Chem. 35, 1603 (1971).CrossRefGoogle Scholar
  142. 141.
    Kasai, T., S. Sakamura, and R. Sakamoto: Amino acid composition of green gram (Phaseolus radiatus L. var. typicus Prain). Part II. Contents of free amino acids, γ-glutamyl peptides and protein amino acids in green gram seeds and seedlings. Agric. Biol. Chem. 35, 1607 (1971).CrossRefGoogle Scholar
  143. 142.
    Kasai, T., S. Sakamura, and R. Sakamoto: Isolation and identification of γ-l-glutamyl-l-methionine sulfoxide from green gram seed. Agric. Biol. Chem. 36, 967 (1972).CrossRefGoogle Scholar
  144. 143.
    Kasai, T., M. Sano, and S. Sakamura: Amino acid composition of broad bean (Vicia faba). I. Pattern of acidic amino acid fractions. Nippon Nogei Kagaku Kaishi 49, 313 (1975). (In Japanese with English summary.)CrossRefGoogle Scholar
  145. 144.
    Kasai, T., M. Sano, and S. Sakamura: Amino acid composition of broad bean (Vicia faba L.) Part II. NG-Methylated arginines in broad bean seed. Agric. Biol. Chem. 40, 2449 (1976).CrossRefGoogle Scholar
  146. 145.
    Kasai, T., M. Ueda, S. Sakamura, and K. Sakata: Amino acid composition of ladino clover (Trifolium repens L. var. giganteum). (Studies on the components in acid amino acid fraction Part I.) Nippon Nogei Kagaku Kaishi 47, 583 (1973). (In Japanese with English summary.)CrossRefGoogle Scholar
  147. 146.
    Kean, E.A. (Ed.): Hypoglycine. PAABS Symposium Series 3, pp. 183. New York: Academic Press. 1976.Google Scholar
  148. 147.
    Kelly, R.B., E.G. Daniels, and J.W. Hinman: Agaritine: Isolation, degradation, and synthesis. J. Org. Chem. 27, 3229 (1962).CrossRefGoogle Scholar
  149. 148.
    Kendall, E.C., H.L. Mason, and B.F. McKenzie: A study of glutathione. III. The structure of glutathione. J. Biol. Chem. 87, 55 (1930).Google Scholar
  150. 149.
    Kendall, E.C., H.L. Mason, and B.F. McKenzie: A study of glutathione. IV. Determination of the structure of glutathione. J. Biol. Chem. 88, 409 (1930).Google Scholar
  151. 150.
    Kerdel-Vegas, F., F. Wagner, P.B. Rusell, N.H. Grant, H.E. Alburn, D.E. Clark, and J.A. Miller: Selenocystathionine, a pharmacologically active factor in the seeds of Lecythis ollaria. Structure of the pharmacologically active factor in the seeds of Lecythis ollaria. Nature 205, 1186 (1965).CrossRefGoogle Scholar
  152. 151.
    King, J., and R. Hirji: Amino acid transport systems of cultured soybean root cells. Can. J. Bot. 53, 2088 (1975).CrossRefGoogle Scholar
  153. 152.
    Kiryushkin, A.A., A.I. Miroshinikov, Y.A. Ovchinnikov, B.V. Rosinov, and M.M. Shemyakin: Mass spectrometric determination of the type of amide bond in α- and γ-peptides of glutamic acid. Biochem. Biophys. Res. Commun. 24, 943 (1966).CrossRefGoogle Scholar
  154. 153.
    Kito, M., H. Inagaki, S. Konishi, and K. Sasaoka: Studies on the biosynthesis of theanine in tea seedlings. Incorporation of ethylamine-l-14C into the ethylamine part of theanine. Mem. Res. Inst. Food Sci., Kyoto Univ. No. 25, 34 (1963).Google Scholar
  155. 154.
    Kito, M., H. Kokura, J. Izaki, and K. Sasaoka: Theanine, a precursor of the phloroglucinol nucleus of cathecins in tea plants. Phytochemistry 7, 599 (1968).CrossRefGoogle Scholar
  156. 155.
    Kjaer, A., and P.O. Larsen: Non-protein amino acids, cyanogenic glycosides, and glucosinolates. Biosynthesis (Geissman.T.A., ed.) (Specialist Periodical Reports). The Chemical Society, London 2, 71 (1973).CrossRefGoogle Scholar
  157. 156.
    Kjaer, A., and P.O. Larsen: Non-protein amino acids, cyanogenic glycosides, and glucosinolates. Biosynthesis (Bu’lock, J.D., ed.) (Specialist Periodical Reports), The Chemical Society, London 4, 179 (1976).CrossRefGoogle Scholar
  158. 157.
    Klosterman, H.J.: Vitamin B6 antagonists of natural origin. J. Agr. Food Chem. 22, 13 (1974).CrossRefGoogle Scholar
  159. 158.
    Klosterman. H.J., G.L. Lamoreux. and J.L. Parsons: Isolation, characterization, and synthesis of linatine. A vitamin B6, antagonist from flaxseed (Linum usitatissinum). Biochemistry 6, 170 (1967).CrossRefGoogle Scholar
  160. 159.
    Konishi, S.: Physiological chemistry of two amides contained in tea tree. Chagyo Kenkyu Hokoku, Shiryo 22 (1970) (in Japanese).Google Scholar
  161. 160.
    Konishi, S., and Z. Kasai: Effect of shading on carbon dioxide-14C assimilation by tea leaves and the metabolism and regulation of theanine and related compounds in tea plants. I. Nippon Dojo-Hiryogaku Zasshi 39, 264 (1968) (in Japanese).Google Scholar
  162. 161.
    Konishi, S., and Z. Kasai: Metabolism and regulation of theanine and related compounds in tea plants. II. Synthesis of theanine from carbon-14C dioxide in tea plants and sites of the synthesis. Nippon Dojo-Hiryogaku Zasshi 39, 439 (1968) (in Japanese).Google Scholar
  163. 162.
    Konishi, S., and Z. Kasai: Metabolism and regulation of theanine and related compounds in tea plants. III. Translocation and metabolic changes of carbon-14C dioxide assimilated products in tea plants during autumn. Nippon Dojo-Hiryogaku Zasshi 39, 444 (1968) (in Japanese).Google Scholar
  164. 163.
    Konishi, S., T. Matsuda, and E. Takahashi: Synthesis of theanine and l-glutamic acid γ-methylamide in Thea sinensis, Camellia sasanqua, and Oryza sativa. V. Metabolism and regulation of theanine and related compounds. Nippon Dojo-Hiryogaku Zasshi 40, 107 (1969) (in Japanese). (English summary in: Soil Science and Plant Nutrition 15, 242 (1969).)Google Scholar
  165. 164.
    Konishi, S., M. Ozasa, and E. Takahashi: Metabolic conversion of N-methyl carbon of γ-glutamylmethylamide to caffeine in tea plants. Plant Cell Physiol. 13, 365 (1972).Google Scholar
  166. 165.
    Konishi, S., and E. Takahashi: Degradation of theanine labelled with carbon-14 in tea seedlings. Nippon Dojo-Hiryogaku Zasshi 37, 612 (1966) (in Japanese).Google Scholar
  167. 166.
    Konishi, S., and E. Takahashi: Existence and synthesis of l-glutamic acid γ-methylamide in tea plants. Plant Cell Physiol. 7, 171 (1966).Google Scholar
  168. 167.
    Konishi, S., and E. Takahashi: Metabolism of theanine-N-ethyl-14C and its metabolic redistribution in the tea plant. VI. Metabolism and regulation of theanine and related compounds. Nippon Dojo-Hiryogaku Zasshi 40, 479 (1969) (in Japanese).Google Scholar
  169. 168.
    Kornguth, M.L., A. Neidle, and H. Waelsch: The stability and rearrangement of ε-N-glutamyl-lysines. Biochemistry 2, 740 (1963).CrossRefGoogle Scholar
  170. 169.
    Kortüm, G., W. Vogel, and K. Andressov: Dissociation constants of organic acids in aqueous solution. London: Butterworth. 1961.Google Scholar
  171. 170.
    Koyama, M., and Y. Obata: Isolation and structure of γ-l-glutamyl-l-β-phenyl-β-alanine, a new γ-glutamyl peptide from Phaseolus angularis W.F. W. ght (Azuki bean). Agric. Biol. Chem. 30, 472 (1966).CrossRefGoogle Scholar
  172. 171.
    Koyama, M., and Y. Obata: Synthesis of α- and γ-l-glutamyl dipeptides of L-β-phenyl-β-alanine. Agric. Biol. Chem. 31, 738 (1967).CrossRefGoogle Scholar
  173. 172.
    Koyama, M., Y. Obata, and S. Sakamura: Identification of hydroxybenzylamines in buckwheat seeds (Fagopyrum esculentum Moench). Agric. Biol. Chem. 35, 1870 (1971).CrossRefGoogle Scholar
  174. 173.
    Koyama, M., Y. Tsujizaki, and S. Sakamura: New amides from buckwheat seeds (Fagopyrum esculentum Moench). Agric. Biol. Chem. 37, 2749 (1973).CrossRefGoogle Scholar
  175. 174.
    Krebs, H.A.: Metabolism of amino acids. IV. The synthesis of glutamine from glutamic acid and ammonia, and the enzymic hydrolysis of glutamine in animal tissues. Biochem. J. 29, 1951 (1935).Google Scholar
  176. 175.
    Kristensen, I., and P.O. Larsen: Differentiation between α-glutamyl peptides, γ-glutamyl peptides, and α-aminoacylglutamic acids by PMR spectroscopy. Acta Chem. Scand. 27, 3123 (1973).CrossRefGoogle Scholar
  177. 176.
    Kristensen, I., and P.O. Larsen: γ-Glutamylwillardiine and γ-glutamylphenylalanylwillardiine from seeds of Fagus silvatica. Phytochemistry 13, 2799 (1974).CrossRefGoogle Scholar
  178. 177.
    Kristensen, I., P.O. Larsen, and H. Sørensen: Free amino acids and γ-glutamyl peptides in seeds of Fagus silvatica. Phytochemistry 13, 2803 (1974).CrossRefGoogle Scholar
  179. 178.
    Kruger, G.J., L.M. du Plessis, and N. Grobbelaar: The structure of N5-(3-hydroxymethyl-2,5-dihydro-2-furyl)-l-allo-γ-hydroxyglutamine, a new amino acid from Hemerocallis fulva L. (Day Lily). J.S. Afr. Chem. Inst. 29, 24 (1976).Google Scholar
  180. 179.
    Kuninori, T., and H. Matsumoto: Glutathione in wheat and wheat flour. Cereal Chem. 40, 252 (1964).Google Scholar
  181. 180.
    Kuo, Y.H., F. Lambein, and R. van Parijs: The presence of isoxazolin-5-one derivatives in root exudates of pea and sweet pea seedlings. Arch. Int. Physiol. Biochim. 84, 169 (1976).Google Scholar
  182. 181.
    Kupiecki, F.P., and A.I. Virtanen: Cleavage of allyl cysteine sulphoxides by an enzyme in onion (Allium cepa). Acta Chem. Scand. 14, 1913 (1960).CrossRefGoogle Scholar
  183. 182.
    Kurelec. B., M. Rijavec. S. Britvic. W.E.G. Müller, and R.K. Zahn: Phytoplankton: presence of γ-glutamyl cycle. Comp. Biochem. Physiol. B 56, 415 (1977).Google Scholar
  184. 183.
    Kuttan, R., N.G. Nair, AN. Radhakrishnan, T.F. Spande, H.J. Yeh, and B. Witkop: The isolation and characterization of γ-l-glutamyl-S-(trans-l-propenyl)-l-cysteine sulfoxide from sandal (Santalum album L.). An interesting occurrence of sulfoxide diastereoisomers in nature. Biochemistry 13, 4394 (1974).CrossRefGoogle Scholar
  185. 184.
    Lambein, F., and R. van Parijs: Isolation and characterization of 1-alanyl-uracil (willardiine) and 3-alanyl-uracil (isowillardiine) from Pisum sativum. Biochem. Biophys. Res. Comm. 32, 474 (1968).CrossRefGoogle Scholar
  186. 185.
    Lambein, F., and R. van Parijs: New isoxazolinone amino acids from Lathyrus odoratus seedlings. Biochem. Biophys. Res. Commun. 61, 155 (1974).CrossRefGoogle Scholar
  187. 186.
    Larsen, P.O.: Amino acids and γ-glutamyl derivatives in seeds of Lunaria annua L. Acta Chem. Scand. 16, 1511 (1962).CrossRefGoogle Scholar
  188. 187.
    Larsen, P.O.: Amino acids and γ-glutamyl derivatives in seeds of Lunaria annua L. Part II. Acta Chem. Scand. 19, 1071 (1965).CrossRefGoogle Scholar
  189. 188.
    Larsen, P.O.: Amino acids and γ-glutamyl derivatives in seeds of Lunaria annua L. Part III. Acta Chem. Scand. 21, 1592 (1967).CrossRefGoogle Scholar
  190. 189.
    Larsen, P.O., and H. Sørensen: γ-Glutamyl-phenylalanine and γ-l-glutamyl-l-tyrosine from seeds of Aubrietia deltoidea DC. Acta Chem. Scand. 21, 2908 (1967).CrossRefGoogle Scholar
  191. 190.
    Le Quesne, W.J., and G.T. Young: Amino acids and peptides. Part I. An examination of the use of carbobenzyloxy-l-glutamic anhydride in the synthesis of glutamyl-peptides. J. Chem. Soc. 1950, 1954.Google Scholar
  192. 191.
    Le Quesne, W.J., and G.T. Young: Amino acids and peptides. Part II. Synthesis of α- and γ-glutamyl-peptides by the azide route. J. Chem. Soc. 1950, 1959.Google Scholar
  193. 192.
    Le Quesne, W.J., and G.T. Young: Amino-acids and peptides. Part VII. The autohydrolysis of glutamyl-peptides. J. Chem. Soc. 1952, 594.Google Scholar
  194. 193.
    Levenberg, B.: Isolation and structure of agaritine, a γ-glutamyl-substituted aryl-hydrazide derivative from Agaricaceae. J. Biol. Chem. 239, 2267 (1964).Google Scholar
  195. 194.
    Levenberg, B.: Isolation and characterization of β-methylene-l-(+)-norvaline from Lactarius helvus. J. Biol. Chem. 243, 6009 (1968).Google Scholar
  196. 195.
    Levenberg, B.: Agaritine and γ-glutamyltransferase (mushroom). Methods Enzymol. 17A, 877 (1970).CrossRefGoogle Scholar
  197. 196.
    Levintov, L., A. Meister, G.H. Hogeboom, and E.L. Kuff: The relation between the enzymic synthesis of glutamine and the glutamine-transfer reaction. J. Amer. Chem. Soc. 77, 5304 (1955).CrossRefGoogle Scholar
  198. 197.
    Lichtenstein, N.: Preparation of γ-alkylamides of glutamic acid. J. Amer. Chem. Soc. 64, 1021 (1942).CrossRefGoogle Scholar
  199. 198.
    Lichtenstein, N., and N. Grossowicz: Inhibition of the growth of Staphylococcus aureus by some derivatives of glutamic acid. J. Biol. Chem. 171, 387 (1947).Google Scholar
  200. 199.
    Liefländer, M.: Über die Darstellung und das Zinkbindungsvermögen einiger Glutamylpeptide. Hoppe-Seyler’s Z. physiol. Chem. 320, 35 (1960).CrossRefGoogle Scholar
  201. 200.
    Lien, R., and S.E. Rognes: Uptake of amino acids by barley leaf slices: kinetics, specificity, and energetics. Physiol. Plant. 41, 175 (1977).CrossRefGoogle Scholar
  202. 201.
    Lindberg, P., R. Bergman, and B. Wickberg: Isolation and structure of coprine, a novel physiologically active cyclopropanone derivative from Coprinus atramentarius and its synthesis via 1-aminocyclopropanol. Chem. Commun. 1975, 946.Google Scholar
  203. 202.
    Lindberg, P., R. Bergman, and B. Wickberg: Isolation and structure of coprine, the in vivo aldehyde dehydrogenase inhibitor in Coprinus atramentarius; synthesis of coprine and related cyclopropanone derivatives. J. Chem. Soc. Perkin I 1977, 684.Google Scholar
  204. 203.
    MacKay, G.F., J.J. Lalich, E.D. Schilling, and F.M. Strong: A toxic factor from Lathyrus odoratus. Arch. Biochem. Biophys. 52, 313 (1954).CrossRefGoogle Scholar
  205. 204.
    McMullen, A.I.: Thiols of low molecular weight in Hevea brasiliensis latex. Biochim. Biophys. Acta 41,152(1960).CrossRefGoogle Scholar
  206. 205.
    McParland, R.H., J.G. Guevara, R.R. Becker, and H.J. Evans: The purification and properties of the glutamine synthetase from the cytosol of soybean root nodules. Biochem. J. 153, 597 (1976).Google Scholar
  207. 206.
    Mapson, L.W., and F.A. Isherwood: Glutathione reductase from germinated peas. Biochem. J. 86, 173 (1963).Google Scholar
  208. 207.
    Maretzki, A., and M. Them: Arginine and lysine transport in sugar-cane cell suspension cultures. Biochemistry 9, 2731 (1970).CrossRefGoogle Scholar
  209. 208.
    Martin, J.L.: Selenium assimilation in animals. In Organic selenium compounds: their chemistry and biology, p. 663. ( Klayman, D.L., and W.H.H. Günther, eds.) New York: Wiley. 1973.Google Scholar
  210. 209.
    Mason, H.L.: Glutathione V. The spontaneous cleavage of glutathione in aqueous solution. J. Biol. Chem. 90, 25 (1931).Google Scholar
  211. 210.
    Matikkala, E.J., and A.I. Virtanen: A new γ-glutamylpeptide, γ-l-glutamyl-S-(prop-l-enyl)-l-cysteine, in the seeds of Chives (Allium schoenoprasum). Acta Chem. Scand. 16, 2461 (1962).CrossRefGoogle Scholar
  212. 211.
    Matikkala, E.J., and A.I. Virtanen: New γ-Glutamylpeptides isolated from the seeds of chives: N,N′-bis-(γ-glutamyl)-cystine, N,N′-bis-(γ-glutamyl)-3,3′-(2-methylethylene-1,2-dithio)-dialanine, γ-glutamyl-S-propylcysteine. Acta Chem. Scand. 17, 1799 (1963).CrossRefGoogle Scholar
  213. 212.
    Matikkala, E.J., and A.I. Virtanen: Synthesis of 3,3′-(2-methylethylene-l,2-dithio)dialanine, an amino acid found as γ-glutamylpeptide in the seeds of chive (Allium schoenoprasum). Acta Chem. Scand. 18, 2009 (1964).CrossRefGoogle Scholar
  214. 213.
    Matikkala, E.J., and A.I. Virtanen: γ-Glutamylpeptidase (glutaminase) in germinating seeds of chive (Allium schoenoprasum). Acta Chem. Scand. 19, 1258 (1965).CrossRefGoogle Scholar
  215. 214.
    Matikkala, E.J., and A.I. Virtanen: γ-Glutamylpeptidase in sprouting onion bulbs. Acta Chem. Scand. 19, 1261 (1965).CrossRefGoogle Scholar
  216. 215.
    Matikkala, E.J., and A.I. Virtanen: A new type of γ-glutamyl tripeptide, γ -glutamyl-S-(prop-l-enyl)cysteinyl-S-(prop-l-enyl)-cysteine sulphoxide. Suom. Kemistilehti B 39, 201 (1966).Google Scholar
  217. 216.
    Matikkala, E.J., and A.I. Virtanen: Isolation of γ-l-Glutamyl-l-arginine and γ -l-glutamyl-S-(2-carboxy-n-propyl)- L-cysteine from Allium cepa (onion). Suom. Kemistilehti B 43, 435 (1970).Google Scholar
  218. 217.
    Mazelis, M., and H.M. Pratt: In vivo conversion of 5-oxoproline to glutamate by higher plants. Plant Physiol. 57, 85 (1976).CrossRefGoogle Scholar
  219. 218.
    Meister, A.: The mechanism and specificity of the glutamine-α-keto acid transamination-deamidation. J. Biol. Chem. 210, 17 (1954).Google Scholar
  220. 219.
    Meister, A.: Glutathione synthesis. In “The Enzymes” (Boyer, P.D., ed.), 3rd. ed. Vol. 10, pp. 671–697. New York: Academic Press. 1974.Google Scholar
  221. 220.
    Meister, A.: Biochemistry of glutathione. In Metab. Pathways (Greenberg, D.M., ed.), 3rd ed. 7,101. New York: Academic Press. 1975.Google Scholar
  222. 221.
    Meister, A., and S. S. Tate: Glutathione and related γ-glutamyl compounds: biosynthesis and utilization. Ann. Rev. Biochem. 45, 559 (1976).CrossRefGoogle Scholar
  223. 222.
    Melville, J.: Labile glutamine peptides, and their bearing on the origin of the ammonia set free during the enzymic digestion of proteins. Biochem. J. 29, 179 (1935).Google Scholar
  224. 223.
    Miflin, B.J., and P.J. Lea: The pathway of nitrogen assimilation in plants. Phytochemistry 15, 873 (1976).CrossRefGoogle Scholar
  225. 224.
    Miflin, B.J., and P.J. Lea: Amino acid metabolism. Ann. Rev. Plant Physiol. 28, 331 (1977).CrossRefGoogle Scholar
  226. 225.
    Mooz, E.D., and A. Meister: Tripeptide (glutathione) synthetase, purification, properties, and mechanism of action. Biochemistry 6, 1722 (1967).CrossRefGoogle Scholar
  227. 226.
    Mooz, E.D., and L. Wigglesworth: Evidence for the γ-glutamyl cycle in yeast. Biochem. Biophys. Res. Commun. 1975, 1066.Google Scholar
  228. 227.
    Morita, K., and S. Kobayashi: Isolation and synthesis of lenthionine, an odorous substance of shiitake, an edible mushroom. Tetrahedron Lett. 1966, 573.Google Scholar
  229. 228.
    Morita, K., and S. Kobayashi: Isolation, structure, and synthesis of lenthionine and its analogs. Chem. Pharm. Bull. 15, 988 (1967).CrossRefGoogle Scholar
  230. 229.
    Morris, C.J., and J.F. Thompson: The identification of (+)-S-methyl-l-cysteine sulfoxide in plants. J. Amer. Chem. Soc. 78, 1605 (1956).CrossRefGoogle Scholar
  231. 230.
    Morris, C.J., and J.F. Thompson: The isolation and characterization of γ-l-glutamyl-l-tyrosine and γ-l-glutamyl-l-phenylalanine from soybeans. Biochemistry 1, 706 (1962).CrossRefGoogle Scholar
  232. 231.
    Morris, C.J., J.F. Thompson, and S. Asen: The identification of γ-l-glutamyl-l-alanine and γ-l-glutamyl-l-valine from Iris leaf tissue. J. Biol. Chem. 239, 1833 (1964).Google Scholar
  233. 232.
    Morris, C.J., J.F. Thompson, S. Asen, and F. Irreverre: The isolation of γ-L- glutamyl-β-aminoisobutyric acid from Iris bulbs. J. Biol. Chem. 236, 1181 (1961).Google Scholar
  234. 233.
    Morris, C.J., J.F. Thompson, S. Asen, and F. Irreverre: The isolation of γ-L-glutamyl-β-alanine from Iris bulbs. J. Biol. Chem. 237, 2180 (1962).Google Scholar
  235. 234.
    Morris, C.J., J.F. Thompson, and R.M. Zacharius: The identification of γ-l-glutamyl-l-leucine and γ-l-glutamyl-l-methionine in kidney bean seeds (Phaseolus vulgaris). J. Biol. Chem. 238, 650 (1963).Google Scholar
  236. 235.
    Neuberger, A., and F. Sanger: The nitrogen of the potato. Biochem. J. 36, 664 (1942).Google Scholar
  237. 236.
    Nigam. S.N., and W.B. McConnell: Incorporation of serine-U-14C into (β-cyano-alanine and γ-glutamyl-β-cyanoalanine in Vicia sativa. Can. J. Biochem. 46, 1327 (1968).CrossRefGoogle Scholar
  238. 237.
    Nigam. S.N., and W.B. McConnell: Seleno-amino compounds from Astragalus bisulcatus. Isolation and identification of γ-l-glutamyl-Se-methyl-seleno-l-cysteine and Se-methylseleno-l-cysteine. Biochim. Biophys. Acta 192, 185 (1969).CrossRefGoogle Scholar
  239. 238.
    Nigam. S.N., and W.B. McConnell: Isolation and identification of l-cystathionine and l-selenocystathionine from the foliage of Astragalus pectinatus. Phytochemistry 11, 377 (1972).CrossRefGoogle Scholar
  240. 239.
    Nigam. S.N., and W.B. McConnell: Isolation and identification of two isomeric glutamyl seleno cystathionines from the seeds of Astragalus pectinatus. Biochim. Biophys. Acta 437, 116 (1976).CrossRefGoogle Scholar
  241. 240.
    Nigam, S.N., J. Tu, and W.B. McConnell: Distribution of selenomethyl-seleno-cysteine and some other amino acids in species of Astragalus, with special reference to their distribution during the growth of A. bisulcatus. Phytochemistry 8, 1161 (1969).CrossRefGoogle Scholar
  242. 241.
    Niimura, Y., and S. Hatanaka: l-Threo- and l-erythro-2-amino-3-hydroxyhex-4-ynoic acids: New amino acids from Tricholomopsis rutilans. Phytochemistry 13, 175 (1974).CrossRefGoogle Scholar
  243. 242.
    Niimura, Y., and S. Hatanaka: Two γ-glutamylpeptides of acetylenic amino acids in Tricholomopsis rutilans. Phytochemistry 16, 1435 (1977).CrossRefGoogle Scholar
  244. 243.
    Nissen, P.: Uptake mechanism: inorganic and organic. Ann. Rev. Plant Physiol. 25, 53 (1974).CrossRefGoogle Scholar
  245. 244.
    Nobel, P.S., and Y.S. Cheung: Two amino acid carriers in pea chloroplasts. Nature, New Biol. 237, 207 (1972).Google Scholar
  246. 245.
    Nugent, D.J.: Chemical synthesis and metabolism of linatine. Dissertation, North Dakota State University, 1970. xxiv + 87 pp. University Microfilms. Ann Arbor, Michigan, Publication No. 71–12, 504.Google Scholar
  247. 246.
    Obata, Y., and R. Kitasawa: Synthesis of γ-l-glutamyl-S-methyl-l-cysteine. Agric. Biol. Chem. 28, 624 (1964).CrossRefGoogle Scholar
  248. 247.
    Ogawa, T.: Identification of γ-glutamyl peptides. Kyoto Daigaku Shokuryo Kagaku Kenkyusho Hokoku 37, 1 (1974).Google Scholar
  249. 248.
    Ohgishi, H.: Extraction of γ-l-glutamyl-l-lathyrine from plants. Japan Kokai 76 29, 213 (1976) (in Japanese).Google Scholar
  250. 249.
    Okada, K., and M. Kawase: Mass spectral differentiation of α- and γ-linkages in glutamyl oligopeptides and its application for structure elucidation of naturally occurring peptides. Chem. Pharm. Bull. 25, 1497 (1977).CrossRefGoogle Scholar
  251. 250.
    Olcott, H.S.: A method for the determination of glutamic acid in proteins. J. Biol. Chem. 153, 71 (1944).Google Scholar
  252. 251.
    O’Neal, D., and K.W. Joy: Glutamine synthetase of pea leaves. Purification, stabilization, and pH optima. Arch. Biochem. Biophys. 159, 113 (1973).CrossRefGoogle Scholar
  253. 252.
    O’Neal, D., and K.W. Joy: Glutamine synthetase of pea leaves. Divalent cation effects, substrate specificity, and other properties. Plant Physiol. 54, 773 (1974).CrossRefGoogle Scholar
  254. 253.
    Orlowski, M., and A. Meister: γ-Glutamyl transpeptidase (hog kidney). Methods Enzymol. 17 A, 883 (1970).CrossRefGoogle Scholar
  255. 254.
    Orlowski, M., and A. Meister: Isolation of highly purified γ-glutamylcysteine synthetase from rat kidney. Biochemistry 10, 372 (1971).CrossRefGoogle Scholar
  256. 255.
    Otani, T.T., and A. Meister: w-Amide and w-amino acid derivatives of α-keto-glutaric acid and oxalacetic acid. J. Biol. Chem. 224, 137 (1957).Google Scholar
  257. 256.
    Otoul, E., R. Marechal, G. Dardenne et F. Desmedt: Des dipeptides soufres differencient nettement Vigna radiata de Vigna mungo. Phytochemistry 14, 173 (1975).CrossRefGoogle Scholar
  258. 257.
    Perrin, D.D.: Dissociation constants of organic bases in aqueous solution. Butterworth, London, 1965.Google Scholar
  259. 258.
    Peterson, P.J., and P.J. Robinson: L-Cystathionine and its selenium analog in Neptunia amplexicaulis. Phytochemistry 11, 1837 (1972).CrossRefGoogle Scholar
  260. 259.
    Pett, L.B.: Changes in the ascorbic acid and glutathione contents of stored and sprouting potatoes. Biochem. J. 30, 1228 (1936).Google Scholar
  261. 260.
    Petzold, U., A. Baumert und F. Jacob: Untersuchungen zur Aufnahme von α- Aminoisobuttersäure und l-Valin in Blätter von Egeria densa Planch. Wiss. Z. Humboldt. Berlin, Math.-Naturwiss. Reihe 25, 137 (1976).Google Scholar
  262. 261.
    Pirie, N.W., and K.G. Pinhey: The titration curve of glutathione. J. Biol. Chem. 84, 321 (1929).Google Scholar
  263. 262.
    Plaisted, P.H.: Clearing free amino acids solutions of plant extracts for paper chromatography. Contrib. Boyce Thompson Inst. 19, 231 (1958).Google Scholar
  264. 263.
    Poole, R.J.: Transport in cells of storage tissue. In Encyclopaedia of Plant Physiology (Pierson, A., and M.H. Zimmermann, eds.), New Series, Vol. 2A (Lüttige, U., and M.G. Pitman, eds.), Transport in Plants II. Part A. Cells, p. 229. Berlin-Heidelberg- New York: Springer. 1976.Google Scholar
  265. 264.
    Przybylska, J., and B. Chwalek: γ-l-Glutamyl-l-tyrosine and γ-l-glutamyl-l-phenylalanine in Lotus corniculatus. L. Bull. Acad. Pol. Sci., Ser. Sci. Biol. 18, 249 (1970).Google Scholar
  266. 265.
    Przybylska, J., and B. Chwalek: Free amino acids in different Lotus species. Acta Soc. Bot. Pol. 40, 439 (1971).Google Scholar
  267. 266.
    Przybylska, J., and W. Kaniewski: γ-l-Glutamyl-β-alanine and γ-l-glutamyl-γ- aminobutyric acid in young pods of Vicia sativa L. Bull. Acad. Pol. Sci., Ser. Sci. Biol. 16, 615 (1968).Google Scholar
  268. 267.
    Pushkin, A.V., Z.G. Evstigneeva, and V.L. Kretovich: Purification and some characteristics of glutamine synthetase from pea seeds. Biokhimiya 39, 533 (1974) (in Russian with English summary).Google Scholar
  269. 268.
    Quirt, A.R., J.R. Lyerla, I.R. Peat, J.S. Cohen, W.F. Reynolds, and M.H. Freedman: Carbon-13 nuclear magnetic resonance titration shifts in amino acids. J. Amer. Chem. Soc. 96, 570 (1974).CrossRefGoogle Scholar
  270. 269.
    Ramaswamy, S., and D.V. Rege: Occurrence of γ-hydroxyglutamic acid in brinjal. Curr. Sci. 41, 681 (1972).Google Scholar
  271. 270.
    Ramponi, G., G. Cappugi, and P. Nassi: Labelling of noncarboxy-terminal glutamic acid during C-terminal analysis by the tritiation method when the γ-glutamyl peptide linkage is present. Biochem. Biophys. Res. Commun. 41, 642 (1970).CrossRefGoogle Scholar
  272. 271.
    Rathbun, W.B.: γ-Glutamyl-cysteine synthetase from bovine lens. II. Cysteine analog studies. Arch. Biochem. Biophys. 122, 73 (1967).CrossRefGoogle Scholar
  273. 272.
    Reeves, W.A., and J.D. Guthrie: Isolation of xanthine, guanine, adenine, proteose, oxalic acid, and glutathione from peanut kernels. Arch. Biochem. Biophys. 26, 316 (1950).Google Scholar
  274. 273.
    Reinhold, L., R.A. Shtarkshall, and D. Ganot: Transport of amino acids in barley leaf tissue. II. The kinetics of uptake of an unnatural analogue. J. Exp. Bot. 21, 926 (1970).CrossRefGoogle Scholar
  275. 274.
    Ressler, C., Y.H. Giza, and S.N. Nigam: β-Cyanoalanine, product of cyanide fixation and intermediate in asparagine biosynthesis in certain species of Lathyrus and Vicia. J. Amer. Chem. Soc. 91, 2766 (1969).CrossRefGoogle Scholar
  276. 275.
    Ressler, C., S.N. Nigam, and Y.H. Giza: Toxic principle in vetch. Isolation and identification of γ-l-glutamyl-l-β-cyanoalanine from common vetch seeds. Distribution in some legumes. J. Amer. Chem. Soc. 91, 2758 (1969).CrossRefGoogle Scholar
  277. 276.
    Ressler, C., S.N. Nigam, Y. Giza, and J. Nelson: Isolation and identification from common vetch of γ-l-glutamyl-β-cyano-l-alanine, a bound form of the neurotoxin β-cyano-l-alanine. J. Amer. Chem. Soc. 85, 3311 (1963).CrossRefGoogle Scholar
  278. 277.
    Rinderknecht, H., D. Thomas und S. Aslin: γ-Glutamyl-S-methyl-cystein und andere Peptide in der Mondbohne (Phaseolus lunatus L.). Helv. Chim. Acta 41, 1 (1958).CrossRefGoogle Scholar
  279. 278.
    Roponen, I.E.: S-Methylcysteine and γ-glutamyl-S-methylcysteine in the fruit of the sea buckthorn (Hippophae rhamnoides). Suom. Kemistilehti B44, 163 (1971).Google Scholar
  280. 279.
    Rowlands, D.A., and G.T. Young: Amino acids and peptides. Part IX. γ-l- Glutamyl-l-alanine, -l-valine, and -l-leucine. J. Chem. Soc. 1952, 3937.Google Scholar
  281. 280.
    Sachs, H.: The optical rotation and some reactions involving α- and γ-peptides of glutamic acid and alanine. Dissertation, Columbia University, 1954, iv + 55 pp. University Microfilms. Ann Arbor, Michigan, Publication No. 8818.Google Scholar
  282. 281.
    Sachs, H., and E. Brand: Optical rotation of peptides. VII. α- and γ-dipeptides of glutamic acid and alanine. J. Amer. Chem. Soc. 75, 4608 (1953).CrossRefGoogle Scholar
  283. 282.
    Sachs, H., and E. Brand: The reaction of nitrous acid with γ-glutamyl peptides. J. Amer. Chem. Soc. 76, 3601 (1954).CrossRefGoogle Scholar
  284. 283.
    Sakato, Y.: Studies on the chemical constituents of tea. Part III. On a new amide theanine. Nippon Nogei Kagaku Kaishi 23, 262 (1950) (in Japanese with English summary).CrossRefGoogle Scholar
  285. 284.
    Sakato, Y., T. Hashizume, and Y. Kishimoto: Studies on the chemical constituents of tea. Part V. Synthesis of theanine. Nippon Nogei Kagaku Kaishi 23, 269 (1950) (in Japanese with English summary).CrossRefGoogle Scholar
  286. 285.
    Santarius, K.A., and C.R. Stocking: Intracellular localization of enzyme in leaves and chloroplast membranes. Permeability to compounds involved in amino acid syntheses. Z. Naturforsch. 24b, 1170 (1969).Google Scholar
  287. 286.
    Sasaoka, K.: Biosynthesis of theanine. Nippon Nogei Kagaku Kaishi 39 R1 (1965) (in Japanese).CrossRefGoogle Scholar
  288. 287.
    Sasaoka, K., and M. Kito: Synthesis of theanine by tea seedling homogenate. Agric. Biol. Chem. 28, 313 (1964).CrossRefGoogle Scholar
  289. 288.
    Sasaoka, K., and M. Kito: Biochemistry of theanine. Chagyo Kenkyu Hokoku, Shiryo 2, 12 (1970) (in Japanese).Google Scholar
  290. 289.
    Sasaoka, K., M. Kito, and H. Inagaki: Biosynthesis of theanine in tea seedlings. Synthesis of theanine by homogenate of tea seedlings. Agric. Biol. Chem. 27, 467 (1963).Google Scholar
  291. 290.
    Sasaoka, K., M. Kito, S. Konishi, and H. Inagaki: Biosynthesis of theanine in tea seedlings. Incorporation of Glutamic acid-l-C14 into theanine. Agric. Biol. Chem. 26, 265 (1962).Google Scholar
  292. 291.
    Sasaoka, K., M. Kito, and Y. Onishi: Synthesis of theanine by pea seed acetone powder extract. Agric. Biol. Chem. 28, 318 (1964).CrossRefGoogle Scholar
  293. 292.
    Sasaoka, K., M. Kito, and Y. Onishi: Synthesis of theanine by pigeon liver acetone powder extract. Agric. Biol. Chem. 28, 325 (1964).CrossRefGoogle Scholar
  294. 293.
    Sasaoka, K., M. Kito, and Y. Onishi: Some properties of the theanine synthesizing enzyme in tea seedlings. Agric. Biol. Chem. 29, 984 (1965).CrossRefGoogle Scholar
  295. 294.
    Sasaoka, K., T. Ogawa, and M. Fukuda: Conjugated homoserine in pea seedlings. Mem. Res. Inst. Food Sci., Kyoto Univ. 32, 16 (1971).Google Scholar
  296. 295.
    Sasaoka, K., T. Ogawa, and M. Fukuda: Conjugated amino acids in the non-cationic fraction of pea seedlings. Agric. Biol. Chem. 36, 383 (1972).CrossRefGoogle Scholar
  297. 296.
    Sasaoka, K., T. Ogawa, K. Moritoki, and M. Kimoto: Antivitamin B-6 effect of 1-aminoproline on rats. Biochim. Biophys. Acta 428, 396 (1976).CrossRefGoogle Scholar
  298. 297.
    Schaedle, M., and J.A. Bassham: Chloroplast glutathione reductase. Plant Physiol. 59, 1011 (1977).CrossRefGoogle Scholar
  299. 298.
    Scheinblatt, M.: Determination of amino acid sequence in di- and tripeptides by nuclear magnetic resonance techniques. J. Amer. Chem. Soc. 88, 2845 (1966).CrossRefGoogle Scholar
  300. 299.
    Schilling, E.D., and F.M. Strong: Isolation, structure and synthesis of a lathyrus factor from L. odoratus. J. Amer. Chem. Soc. 77, 2843 (1955).CrossRefGoogle Scholar
  301. 300.
    Schulze, E., und E. Bosshard: Über das Glutamin. Ber. 16, 312 (1883).Google Scholar
  302. 301.
    Schwimmer, S.: S-Allyl-l-cysteine sulfoxide lyase [Allium cepa (Onion)]. Methods Enzymol. 17 B, 475 (1971).CrossRefGoogle Scholar
  303. 302.
    Schwimmer, S., and S.J. Austin: γ-Glutamyl transpeptidase of sprouted onion. J. Food Sei. 36, 807 (1971).CrossRefGoogle Scholar
  304. 303.
    Sekura, R., and A. Meister: γ-Glutamylcysteine synthetase. Further purification, “half of the sites” reactivity, subunits, and specificity. J. Biol. Chem. 252, 2599 (1977).Google Scholar
  305. 304.
    Selvendran, R.R., and S. Selvendran: Chemical changes in young tea plant (Camellia sinensis) tissues following application of fertilizer nitrogen. Ann. Bot. (London) 37, 453 (1973).Google Scholar
  306. 305.
    Selvendran, R.R., and S. Selvendran: Distribution of some nitrogenous constituents in the tea plant. J. Sci. Food Agr. 24, 161 (1973).CrossRefGoogle Scholar
  307. 306.
    Seneviratne, A.S., and L. Fowden: The amino acids of the genus Acacia. Phytochemistry 7, 1039 (1968).CrossRefGoogle Scholar
  308. 307.
    Sheehan, J.C., and D.H. Yang: A new synthesis of cysteinyl peptides. J. Amer. Chem. Soc. 80, 1158 (1958).CrossRefGoogle Scholar
  309. 308.
    Shtarkshall, R.A., L. Reinhold, and H. Harel: Transport of amino acids in barley leaf tissue. I. Evidence for a specific uptake mechanism and the influence of “ageing” on accummulatory capacity. J. Exp. Bot. 21, 915 (1970).CrossRefGoogle Scholar
  310. 309.
    Shvachkin, Y.P., N.A. Voskova, and G.A. Korshunova: Total synthesis of willardiine peptides isolated from Fagus silvatica. Zh. Obshch. Khim. 47, 2631 (1977) (in Russian).Google Scholar
  311. 310.
    Soldal, T., and I. Nissen: Multiphasic uptake of amino acids by barley roots. Physiol. Plant. 43, 181 (1978).CrossRefGoogle Scholar
  312. 311.
    Spragg, S.P., and E.W. Yemm: Glutathione and ascorbic acid in the metabolism of germinating peas. Biochem. J. 58, Proc. Biochem. Soc. X I (1954).Google Scholar
  313. 312.
    Späre, G., and A.I. Virtanen: On the lachrymatory factor in onion (Allium cepa) vapours and its precursor. Acta Chem. Scand. 17, 641 (1963).CrossRefGoogle Scholar
  314. 313.
    Stelzel, P.: Die Herstellung der Peptidbindung. Synthese homöomerer Peptide aus Aminosäuren. Asymmetrische Anhydride. In: Methoden der Organischen Chemie (Houben-Weyl), 4. Auflage (Ed. E. Müller), Vol. 15, 2. Synthese von Peptiden. Teil II, p. 169. Stuttgart: G. Thieme. 1974.Google Scholar
  315. 314.
    Sugii, M., T. Suzuki, and S. Nagasawa: Isolation of (—)-(S)-propenyl-l-cysteine from garlic. Chem. Pharm. Bull. 11, 548 (1963).CrossRefGoogle Scholar
  316. 315.
    Sugii, M., T. Suzuki, S. Nagasawa, and K. Kawashima: Isolation of γ-l-Glutamyl- S-allylmercapto-l-cysteine and S-allylmercapto-l-cysteine from garlic. Chem. Pharm. Bull. 12, 1114 (1964).CrossRefGoogle Scholar
  317. 316.
    Sullivan, B., and M. Howe: The isolation of glutathione from wheat germ. J. Amer. Chem. Soc. 59, 2742 (1937).CrossRefGoogle Scholar
  318. 317.
    Sundar, R.S., K. Hariharan, and D.R. Rao: Major acidic peptides of Arachis hypogea. Lebensm.-wiss. Technol. 9, 180 (1976).Google Scholar
  319. 318.
    Suzuki, T.: Metabolism of methylamine in tea plant (Thea sinensis). Biochem. J. 132, 753 (1973).Google Scholar
  320. 319.
    Suzuki, T., M. Sugii, and T. Kakimoto: New γ-Glutamyl peptides in garlic. Chem. Pharm. Bull. 9, 77 (1961).CrossRefGoogle Scholar
  321. 320.
    Suzuki, T., M. Sugii, and T. Kakimoto: γ-l-Glutamyl-S-allyl-l-cysteine, a new γ-glutamyl peptide in garlic. Chem. Pharm. Bull. 10, 345 (1962).Google Scholar
  322. 321.
    Suzuki, T., M. Sugii, and T. Kakimoto: Metabolic incorporation of l-valine-C14 into S-(2-carboxypropyl)glutathione and S-(2-carboxypropyl)cysteine in garlic. Chem. Pharm. Bull. 10, 328 (1962).CrossRefGoogle Scholar
  323. 322.
    Suzuki, T., M. Sugii, T. Kakimoto, and N. Tsuboi: Isolation of (—)-S-allyl-l- cysteine from garlic. Chem. Pharm. Bull. 9, 251 (1951).CrossRefGoogle Scholar
  324. 323.
    Szent-Gyorgyi, A., R.H. Chung, M.J. Boyajian, M. Tishler, B.H. Arison, E.F. Schoenwaldt, and J.J. Wittick: Agaridoxin, a mushroom metabolite. Isolation, structure and synthesis. J. Org. Chem. 41, 1603 (1976).CrossRefGoogle Scholar
  325. 324.
    Szewszuk, A., and G.E. Connell: Specificity of γ-glutamyl cyclotransferase. Can. J. Biochem. 53, 706 (1975).CrossRefGoogle Scholar
  326. 325.
    Takeo, T.: L-Alanine as a precursor of ethylamine in Camellia sinensis. Phytochemistry 13, 1401 (1974).CrossRefGoogle Scholar
  327. 326.
    Takeo, T.: L-Alanine decarboxylase in Camellia sinensis. Phytochemistry 17, 313 (1978).CrossRefGoogle Scholar
  328. 327.
    Tate, S.S., and A. Meister: Interaction of γ-glutamyl transpeptidase with amino acids, dipeptides, and derivatives and analogs of glutathione. J. Biol. Chem. 249, 7593 (1974).Google Scholar
  329. 328.
    Thierfelder, H., und E. von Cramm: Über glutaminhaltige Polypeptide und zur Frage ihres Vorkommens in Eiweiß. Hoppe-Seyler’s Z. physiol. Chem. 105, 58 (1919).CrossRefGoogle Scholar
  330. 329.
    Thompson, J.F.: γ-Glutamyl transpeptidase (plant). Methods Enzymol. 17 A, 894 (1970).CrossRefGoogle Scholar
  331. 330.
    Thompson, J.F., C.J. Morris, W.N. Arnold, and D.H. Turner: γ-Glutamylpeptides in plants. Amino Acid Pools (ed. Holden, J.T.). Amsterdam-London-New York: Elsevier. 54 (1962).Google Scholar
  332. 331.
    Thompson, J.F., C.J. Morris, and R.K. Gering: Purification of plant amino acids for paper chromatography. Anal. Chem. 31, 1028 (1959).CrossRefGoogle Scholar
  333. 332.
    Thompson, J.F., C.J. Morris, and R.M. Zacharius: Isolation of (—)-S-methyl-l- cysteine from beans (Phaseolus vulgaris). Nature 178, 593 (1956).CrossRefGoogle Scholar
  334. 333.
    Thompson, J.F., L.K. Turner, and R.K. Gering: γ-Glutamyl transpeptidase in plants. Phytochemistry 3, 33 (1964).CrossRefGoogle Scholar
  335. 334.
    Tkachuk, R., and V.J. Mellish: γ-l-Glutamyl-l-cysteine: its isolation and identification from wheat germ. Can. J. Biochem. 55, 295 (1977).CrossRefGoogle Scholar
  336. 335.
    Torii, H., and I. Ota: Environmental variation of the chemical constituents of the tea leaf. IV. Distribution of nitrogeneous fractions in the tea seedling grown in dark. Nippon Nogei Kagaku Kaishi 33, 125 (1959) (in Japanese with English summary).CrossRefGoogle Scholar
  337. 336.
    Tottmar, O., and P. Lindberg: Effects on rat liver acetaldehyde dehydrogenases in vitro and in vivo by coprine, the disulfiram-like constituent of Coprinus atramentarius. Acta Pharmacol. Toxicol. 40, 476 (1977).Google Scholar
  338. 337.
    Touze-Soulet, J.M., et C. Montant: Étude de quelques formes combinées nouvelles de l’acide glutamique chez Boletus edulis Fr. ex. Bull. Bull. Soc. Chim. Biol. 44, 451 (1962).Google Scholar
  339. 338.
    Trelease, S.F., A.A.D. Somma, and A.L. Jacobs: Selenoamino acid found in Astragalus bisulcatus. S-Methylcysteine and Se-methyl selenocysteine. Science 132, 618 (1960).CrossRefGoogle Scholar
  340. 339.
    Tschiersch, B.: Occurrence of γ-glutamyl-β-cyanoalanines. Tetrahedron Lett. 1964, 747.Google Scholar
  341. 340.
    Tschiersch, B.: Toxische Aminosäuren. Pharmazie 21, 444 (1966).Google Scholar
  342. 341.
    Tsuji, H., K. Moritoki, T. Ogawa, and K. Sasaoka: Fate of 1-aminoproline and urinary excretion of 1-aminoprolyl hydrazone of pyridoxal in rats. Agric. Biol. Chem. 41, 1413 (1977).CrossRefGoogle Scholar
  343. 342.
    Van Egeraat, A.S.: Enzymic studies on ninhydrin-positive compounds exuded by root tips of pea seedlings. Plant Soil 47, 645 (1977).CrossRefGoogle Scholar
  344. 343.
    Van Hejenoort, J., S.E. Brica, B.C. Das et E. Lederer: Determination de sequence d’acides amineà dans des oligopeptides par la spectrometrie de masse. IX. (A) Acylation avec de nouveaux radicaux mixtes, (B) Peptides contenant des acides amines trifonctionnels. Tetrahedron 23, 3403 (1967).CrossRefGoogle Scholar
  345. 344.
    Van Slyke, D.D., R.T. Dillon, D.A. Macfadyen, and P. Hamilton: Gasometric determination of carboxyl groups in free amino acids. J. Biol. Chem. 141, 627 (1941).Google Scholar
  346. 345.
    Varner, J.E., and G.L. Webster: Studies in the enzymatic synthesis of glutamine. Plant Physiol. 30, 393 (1955).CrossRefGoogle Scholar
  347. 346.
    Vickery, H.B., G.W. Pucher, H.E. Clark, A.C. Chibnall, and R.G. Westale: The determination of glutamine in the presence of asparagine. Biochem. J. 29, 2710 (1935).Google Scholar
  348. 347.
    Virtanen, A.I.: A review — Studies on organic sulphur compounds and other labile substances in plants. Phytochemistry 4, 207 (1965).CrossRefGoogle Scholar
  349. 348.
    Virtanen, A.I.: Antimikrobielle und antithyroide Stoffe in einigen Nahrungspflanzen. Qualitas Plant. Mater. Vegetabiles 18, 8 (1969).Google Scholar
  350. 349.
    Virtanen, A.I., and A. Berg: γ-Glutamyl-alanine in pea seedlings. Acta Chem. Scand. 8, 1089 (1954).CrossRefGoogle Scholar
  351. 350.
    Virtanen, A.I., and T. Ettala: A new γ-glutamyltripeptide in Juncus species. Acta Chem. Scand. 12, 787 (1958).CrossRefGoogle Scholar
  352. 351.
    Virtanen, A.I., M. Hatanaka und M. Berlin: γ-l-Glutamyl-S-n-propylcystein in Knoblauch (Allium sativum). Suom. Kemistilehti B35, 52 (1962).Google Scholar
  353. 352.
    Virtanen, A.I., and P.K. Hietala: γ-Hydroxyglutamic acid in green plants. Acta Chem. Scand. 9, 175 (1955).CrossRefGoogle Scholar
  354. 353.
    Virtanen, A.I., and E.J. Matikkala: The isolation of S-methyl-cysteinesulphoxide and S-n-propylcysteinesulphoxide from onion (Allium cepa) and the antibiotic activity of crushed onion. Acta Chem. Scand. 13, 1898 (1959).CrossRefGoogle Scholar
  355. 354.
    Virtanen, A.I., and E.J. Matikkala: New γ-glutamylpeptides in onion (Allium cepa). I. γ-Glutamylphenylalanine and γ-glutamyl-S-(β-carboxy-β-methylethyl)-cysteinylglycine. Suom. Kemistilehti B 33, 83 (1960).Google Scholar
  356. 355.
    Virtanen, A.I., and E.J. Matikkala: Neue γ-Glutamylpeptide in der Zwiebel (Allium cepa). Hoppe-Seyler’s Z. physiol. Chem. 322, 8 (1960).CrossRefGoogle Scholar
  357. 356.
    Virtanen, A.I., and E.J. Matikkala: New γ-L-glutamyl peptides in onion (Allium cepa). III. Suom. Kemistilehti B 34, 53 (1961).Google Scholar
  358. 357.
    Virtanen, A.I., and E.J. Matikkala: Structure of γ-glutamyl peptide 4 isolated from onion (Allium cepa). y-L-glutamyl-S-l-propenyl cysteine sulfoxide. Suom. Kemistilehti B 34, 84 (1961).Google Scholar
  359. 358.
    Virtanen, A.I., and E.J. Matikkala: Proofs of the presence of y-L-glutamyl-S-(l-propenyl)cysteine sulphoxide and cycloalliin as original compounds in onion (Allium cepa). Suom. Kemistilehti B 34, 114(1961).Google Scholar
  360. 359.
    Virtanen, A.I., and E.J. Matikkala: γ-L-Glutamyl-S-(prop-l-enyl)-L-cysteine in the seeds of chives. Suom. Kemistilehti B 35, 245 (1962).Google Scholar
  361. 360.
    Virtanen, A. I., and I. Mattila: γ-l-glutamyl-S-allyl-l-cysteine in garlic (Allium sativum). Suom. Kemistilehti B34, 44 (1961).Google Scholar
  362. 361.
    Vogel, F.S., L.A.K. Kemper, S.J. McGarry, and D.G. Graham: Cytostatic, cytocidal, and potential antitumor properties of a class of quinoid compounds, initiators of the dormant state in the spores of Agaricus bisporus. Amer. J. Pathol. 78, 33 (1975).Google Scholar
  363. 362.
    Vogel, F.S., S.J. McGarry, L.A.K. Kemper, and D.G. Graham: Bacteriocidal properties of a class of quinoid compounds related to sporulation in the mushroom, Agaricus bisporus. Amer. J. Pathol. 76, 165 (1974).Google Scholar
  364. 363.
    Waley, S.G.: Acidic peptides of the lens. 3. The structure of ophthalmic acid. Biochem. J. 68, 189 (1958).Google Scholar
  365. 364.
    Waley, S.G.: Naturally occurring peptides. Advan. Protein Chem. 21, 1 (1966).CrossRefGoogle Scholar
  366. 365.
    Watanabe, T., Y. Shima, and T. Ichihara: Changes in free amino acids during ripening period of soybean seed. Hokkaido Kyoiku Daigaku Kiyo. Dai-2-Bu, A 20, 76 (1970) (in Japanese with English summary).Google Scholar
  367. 366.
    Watanabe, T., M. Tsugawa, N. Takayama, and Y. Furukawa: Changes of free amino acids of each organ in the development and growth of the kidney bean plant. Hokkaido Kyoiku Daigaku Kiyo, Dai-2-Bu, B22, 45 (1971) (in Japanese with English summary).Google Scholar
  368. 367.
    Watson, R., and L. Fowden: The uptake of phenylalanine and tyrosine by seedling root tips. Phytochemistry 14, 1181 (1975).CrossRefGoogle Scholar
  369. 368.
    Weaver, R.F., K.V. Rajagopalan, and P. Handler: Mechanism of action of a respiratory inhibition from the gill tissue of the sprouting mushroom, Agaricus bisporus. Arch. Biochem. Biophys. 149, 541 (1972).CrossRefGoogle Scholar
  370. 369.
    Weaver, R.F., K.V. Rajagopalan, P. Handler, and W.L. Byrne: γ-l-Glutaminyl- 3,4-benzoquinone. Structural studies and enzymic synthesis. J. Biol. Chem. 246, 2015 (1971).Google Scholar
  371. 370.
    Weaver, R.F., K.V. Rajagopalan, P. Handler, P. Jeffs, W.L. Byrne, and D. Rosenthal: Isolation of γ-l-glutaminyl-4-hydroxybenzene and γ-l-glutaminyl-3,4- benzoquinone: a natural sulfhydryl reagent, from sporulating gill tissue of the mushroom Agaricus bisporus. Proc. Nat. Acad. Sci. U.S. 67, 1050 (1970).CrossRefGoogle Scholar
  372. 371.
    Weaver, R.F., K.V. Rajagopalan, P. Handler, D. Rosenthal, and P.W. Jeffs: Isolation from the mushroom Agaricus bisporus and chemical synthesis of γ-l-glutaminyl-4-hydroxybenzene. J. Biol. Chem. 246, 2010 (1971).Google Scholar
  373. 372.
    Webster, G.C.: Peptide-bond synthesis in higher plants. I. The synthesis of glutathione. Arch. Biochem. Biophys. 47, 241 (1953).CrossRefGoogle Scholar
  374. 373.
    Webster, G.C.: Enzymatic synthesis of γ-glutamylcysteine in higher plants. Plant Physiol. 28, 728 (1953).CrossRefGoogle Scholar
  375. 374.
    Webster, G.C., and J.E. Varner: Peptide-synthesis in higher plants. II. Studies on the mechanism of synthesis of γ-glutamylcysteine. Arch. Biochem. Biophys. 52, 22 (1954).CrossRefGoogle Scholar
  376. 375.
    Webster, G.C., and J.E. Varner: Peptide bond synthesis in higher plants. III. The formation of glutathione from γ-glutamylcysteine. Arch. Biochem. Biophys. 55, 95 (1955).CrossRefGoogle Scholar
  377. 376.
    Welter, A., J. Jadot, G. Dardenne, M. Marlier et J. Casimir: l-γ-Glutamyl-2- amino-3-hexanone dans Russula ochroleuca. Phytochemistry 15, 1984 (1976).Google Scholar
  378. 377.
    Wickremasinghe, R.L., and K.P.W.C. Perera: Site of biosynthesis and translocation of theanine in the tea plant. Tea Quart. 43, 175 (1972).Google Scholar
  379. 378.
    Wiewiorowskl, M., and H. Augustyniakowa: Occurrence of γ-L-glutamyl-L-tyrosine and γ-l-glutamyl-l-phenylalanine in seeds of Lupinus angustifolius, and Lupinus albus. Acta Biochim. Pol. 9, 399 (1962).Google Scholar
  380. 379.
    Wilk, S., and M. Orlowski: Determination of pyrrolidone carboxylate and γ-glutamyl amino acids by gas chromatography. Anal. Biochem. 69, 100 (1975).CrossRefGoogle Scholar
  381. 380.
    Wilson, H., and R.K. Cannan: The Glutamic acid-pyrrolidonecarboxylic acid system. J. Biol. Chem. 119, 309 (1937).Google Scholar
  382. 381.
    Wolosiuk, R.A., and B.B. Buchanan: Thioredoxin and glutathione regulate photosynthesis in chloroplasts. Nature 266, 565 (1977).CrossRefGoogle Scholar
  383. 382.
    Wu, P.L., and D.A. Caldas: Conversion of glutamic acid to 2-pyrrolidone-5- carboxylic acid in plant extracts during elution from ion-exchange resins. An. Acad. Brasil. Cienc. 44, 273 (1972).Google Scholar
  384. 383.
    Wünsch, E.: Mehrfunktionelle Aminosäuren und ihre Einbeziehung in die Synthese. In: Methoden der Organischen Chemie (Houben-Weyl), 4. Auflage (Ed. E. Müller), Vol. 15,1. Synthese von Peptide, Teil 1, p. 468. Stuttgart: G. Thieme. 1974.Google Scholar
  385. 384.
    Yasumoto, K., K. Iwami, and H. Mitsuda: A new sulphur-containing peptide from Lentinus edodes acting as a precursor for lenthionine. Agric. Biol. Chem. 35, 2059 (1971).CrossRefGoogle Scholar
  386. 385.
    Yasumoto, K., K. Iwami, and H. Mitsuda: Enzyme-catalysed evolution of lenthionine from lentinic acid. Agric. Biol. Chem. 35, 2070 (1971).CrossRefGoogle Scholar
  387. 386.
    Yasumoto, K., K. Iwami, and H. Mitsuda: Enzymic formation of Shii-ta-ke aroma from non-volatile precursors. (S)-lenthionine from lentinic acid. Mushroom Sci. 9, 371 (1976).Google Scholar
  388. 387.
    Yasumoto, K., K. Iwami, H. Mizusawa, and H. Mitsuda: Preparation of desglutamyllentinic acid, a new sulfur-containing amino acid, from lentinic acid and its capacity to form a complex with pyridoxal phosphate. Nippon Nogei Kagaku Kaishi 50, 563 (1976) (in Japanese with English summary).CrossRefGoogle Scholar
  389. 388.
    Yasumoto, K., K. Iwami, T. Yonezawa, and H. Mitsuda: Anion activation of γ-glutamyltransferase from fruiting bodies of Lentinus edodes. Phytochemistry 16, 1351 (1977).CrossRefGoogle Scholar
  390. 389.
    Yemm, E.W.: Cellular oxidations and the synthesis of amino-acids and amides in plants. In: Recent Developments in Cell Physiology (Ed. J.A. Kitching ). London: Butterworth. 1954.Google Scholar
  391. 390.
    Zacharius, R.M.: Composition of the nitrogenous components of the bush bean seed (Phaseolus vulgaris) including isolation of δ-acetylornithine. Phytochemistry 9, 2047 (1970).CrossRefGoogle Scholar
  392. 391.
    Zacharius, R.M., C.J. Morris, and J.F. Thompson: Isolation and characterization of γ-l-glutamyl-S-methyl-l-cysteine from kidney beans (Phaseolus vulgaris). Arch. Biochem. Biophys. 80, 199 (1959).CrossRefGoogle Scholar
  393. 392.
    Zacharius, R.M., and E.A. Talley: Elution behavior of naturally occurring ninhydrin-positive compounds during ion exchange chromatography. Anal. Chem. 34, 1551 (1962).CrossRefGoogle Scholar
  394. 393.
    IUPAC-IUB: Nomenclature of α-amino acids. Biochemistry 14, 449 (1975).CrossRefGoogle Scholar
  395. 394.
    Hatanaka, S., and S. Kaneko: γ-L-Glutamyl-L-lathyrine from Lathyrus japonicus. Phytochemistry 17, 2027 (1978).CrossRefGoogle Scholar
  396. 395.
    Kinoshita, T., and S. Minato: Structural studies on anthglutin, an inhibitor of γ-glutamyl transpeptidase, from Penicillium oxalicum. Bull. Chem. Soc. Japan 51, 3282 (1978).CrossRefGoogle Scholar
  397. 396.
    Minato, S.: Isolation of anthglutin, an inhibitor of γ-glutamyl transpeptidase from Penicillium oxalicum. Arch. Biochem. Biophys. 192, 235 (1979).CrossRefGoogle Scholar
  398. 397.
    Gmelin, R.: Personal communication.Google Scholar
  399. 398.
    Mouri, T., T. Murahara, H. Kayama, S. Tsutsui, T. Kurokawa, Y. Shibata, N. Ishida, S. Kakimoto, F. Asakura, H. Shirahama, and T. Matsumoto: New inhibitors for the blastgenation of human lymphocytes. Isolation from edible mushrooms. Agric. Biol. Chem. 42, 2179 (1978).CrossRefGoogle Scholar
  400. 399.
    Iwami, K., K. Yasumoto, and T. Fushiki: A unique γ-glutamyltransferase from fruiting bodies of Tricholoma shijemi. Agric. Biol. Chem. 42, 2175 (1978).CrossRefGoogle Scholar
  401. 400.
    Mazelis, M., and R.K. Creveling: 5-Oxoprolinase (l-pyroglutamate hydrolase) in higher plants. Plant Physiol. 62, 798 (1978).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1980

Authors and Affiliations

  • T. Kasai
    • 1
  • P. O. Larsen
    • 1
  1. 1.Chemistry DepartmentRoyal Veterinary and Agricultural UniversityCopenhagenDenmark

Personalised recommendations