Advertisement

Abstract

Carotenoids form a class of isoprenoid polyenes widely distributed in Nature. They are synthesized de novo by all photosynthetic organisms and certain bacteria, yeasts and fungi, whereas various animals have the capacity to modify the structure of dietary carotenoids. Carotenoids serve many important functions including protection of photosynthetic organisms against photodynamic destruction. They serve as auxiliary light absorbers for photosynthesis and phototaxis and as pro-Vitamin A in mammals. The role of Vitamin A in the visual process is well established. Whereas carotenoid pigments appear to have no biological activity, several of their presumed metabolites are biologically active. Synthetic carotenoids are used as food additives (101).

Keywords

Absolute Configuration Total Synthesis Cotton Effect Polyene Chain Tetrahedron Letter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aasen, A.J., and S. Liaaen-Jensen: Cross-conjugated carotenals. Acta Chem. Scand. 21, 2185 (1967).CrossRefGoogle Scholar
  2. 2.
    Aasen, A.J., S. Liaaen-Jensen, and G. Borch: The chirality of zeaxanthin from different sources. Acta Chem. Scand. 25, 404 (1971).Google Scholar
  3. 3.
    Aguilar-Martinez, M., and S. Liaaen-Jensen: Trikentriorhodin. Acta Chem. Scand. B28, 1247 (1974).CrossRefGoogle Scholar
  4. 4.
    Andrewes, A.G., G. Borch, and S. Liaaen-Jensen: On the absolute configuration of lutein. Acta Chem. Scand. B28, 139 (1974).CrossRefGoogle Scholar
  5. 5.
    Andrewes, A.G., G. Borch, and S. Liaaen-Jensen: Synthesis and chiroptical properties of the model compounds (2R,6R,2′R,6′S)-2,2′-dimethyl-ε,ε-carotene. Acta Chem. Scand. B30, 214 (1976).CrossRefGoogle Scholar
  6. 6.
    Andrewes, A.G., G. Borch, and S. Liaaen-Jensen: Synthesis of the model compounds (2R,6S,2′R,6′S)-2,2′-dimethyl-γ, γ-carotene. Acta Chem. Scand. B31, 212 (1977).CrossRefGoogle Scholar
  7. 7.
    Andrewes, A.G., G. Borch, S. Liaaen-Jensen, and G. Snatzke: On the absolute configuration of astaxanthin and actinioerythrin. Acta Chem. Scand. B28, 730 (1974).CrossRefGoogle Scholar
  8. 8.
    Andrewes, A.G., G. Englert, G. Borch, H.H. Strain, and S. Liaaen-Jensen: Absolute configuration of eschscholtzxanthin. Phytochem. 18, 303 (1979).CrossRefGoogle Scholar
  9. 9.
    Andrewes, A.G., C.L. Jenkins, M.P. Starr, J. Shepherd, and M. Hope: Structure of xanthomonadin I, a novel dibrominated arylpolyene pigment produced by the bacterium Xanthomonas juglandis. Tetrahedron Letters 1976, 4023.Google Scholar
  10. 10.
    Andrewes, A.G., S. Liaaen-Jensen, and G. Borch: Synthesis of (2R,2′R)-2,2′-dimethyl-β,β-carotene and absolute configuration of (2R,2′R)-(4-hydroxymethyl-2-butenyl)-2′-(3-methyl-2-butenyl)-β,β-carotene. Acta Chem. Scand. B28, 737 (1974).CrossRefGoogle Scholar
  11. 11.
    Andrewes, A.G., S. Liaaen-Jensen, and O.B. Weeks: Absolute configuration of decaprenoxanthin. Acta Chem. Scand. B29, 884 (1975).CrossRefGoogle Scholar
  12. 12.
    Andrewes, A.G., and M.P. Starr: (3R,3′R)-Astaxanthin from the yeast Phaffia rhodozyma. Phytochem. 15, 1009 (1976).CrossRefGoogle Scholar
  13. 13.
    Arpin, N., J.-L. Fiasson, S. Norgärd, G. Borch, and S. Liaaen-Jensen: C50- carotenoids from Arthrobacter glacialis. Acta Chem. Scand. B29, 921 (1975).CrossRefGoogle Scholar
  14. 14.
    Arpin, N., H. Kjøsen, G.W. Francis, and S. Liaaen-Jensen: The constitution of aleuriaxanthin. Phytochem. 12, 2751 (1973).CrossRefGoogle Scholar
  15. 15.
    Arpin, N., and S. Liaaen-Jensen: Rubixanthin and gazaniaxanthin. Phytochem. 8, 185 (1969).CrossRefGoogle Scholar
  16. 16.
    Arpin, N., S. Liaaen-Jensen, and M. Trouilloud: Isolation of decaprenoxanthin mono- and diglucoside from an Arthrobacter sp. Acta Chem. Scand. 26, 2524 (1972).CrossRefGoogle Scholar
  17. 17.
    Arpin, N., W.A. Svec, and S. Liaaen-Jensen: New fucoxanthin-related carotenoids from Coccolithus huxleyi. Phytochem. 15, 529 (1976).CrossRefGoogle Scholar
  18. 19.
    Barber, M.S., A. Hardisson, L.M. Jackman, and B.C.L. Weedon: Stereochemistry of the bixins. J. Chem. Soc. 1961, 1625.Google Scholar
  19. 20.
    Bartlett, L., W. Klyne, W.P. Mose, P.M. Scopes, G. Galasko, A.K. Mallams, and B.C.L. Weedon: Optical rotatory dispersion of carotenoids. J. Chem. Soc (C) 1969, 2527.Google Scholar
  20. 21.
    Berger, R., G. Borch, and S. Liaaen-Jensen: Chirality of asterinic acid. Acta Chem. Scand. B31, 243 (1977).CrossRefGoogle Scholar
  21. 22.
    Bernhardt, K., G.P. Moss, G. Toth, and B.C.L. Weedon: Stereoisomers of fucoxanthin. Tetrahedron Letters 1974, 3099.Google Scholar
  22. 23.
    Bernhardt, K., G.P. Moss, G. Toth, and B.C.L. Weedon: Absolute configuration of fucoxanthin. Tetrahedron Letters 1976, 115.Google Scholar
  23. 23a.
    Bernhard, K., F. Kienzle, H. Mayer, and R.K. Müller: The synthesis of (3S,3′S)-asterinic acid. Abstracts Fifth Internat. IUP AC Symp. Carotenoids 1978, 4.Google Scholar
  24. 23b.
    Bestman, H.J.: Synthesis of polyenes via phosphonium ylids. Pure and Applied Chem. 51, 515 (1979).CrossRefGoogle Scholar
  25. 24.
    Bingham, A., H.S. Mosher, and A.G. Andrewes: Epimeric 3,3′-dihydroxy-ε,ε-carotene from the skin of the yellow Costa Rican frog, Atelopus chiriquiensis. Chem. Commun. 1977, 96.Google Scholar
  26. 24a.
    Bingham, A., D.W. Wilkie, and H.S. Mosher: Tunaxanthin: Occurrence and absolute stereochemistry. Comp. Biochem. Physiol. 62B, 489 (1979).CrossRefGoogle Scholar
  27. 25.
    Bodea, C., A.G. Andrewes, G. Borch, and S. Liaaen-Jensen: Physoxanthin. Phytochem. 17, 2038 (1978).Google Scholar
  28. 26.
    Bonnett, R., A.K. Mallams, A.A. Spark, J.L. Tee, B.C.L. Weedon, and A. McCormick: Structure and reactions of fucoxanthin. J. Chem. Soc. (C) 1969, 429.Google Scholar
  29. 27.
    Borch, G., S. Norgärd, and S. Liaaen-Jensen: Circular dichroism and relative configuration of C50-carotenoids. Acta Chem. Scand. 25, 402 (1971).CrossRefGoogle Scholar
  30. 28.
    Borch, G., H. Rønneberg, R. Berger, N. Arpin, R. Buchecker, S. Hertzberg, M. Hallenstvet, K. L. Simpson, and S. Liaaen-Jensen: On the chirality of 2′-oxygenated carotenoids related to plectaniaxanthin. Phytochem. To be published.Google Scholar
  31. 29.
    Bremser, W., and J. Paust: Die 13C-NMR-Spectren von β-Carotin und die Ladungsverteilung in der Polyenkette von Apocarotinalen. Org. Magn. Res. 6, 433 (1974).CrossRefGoogle Scholar
  32. 30.
    Britton, G.: Later reactions of carotenoid biosynthesis. Pure and Applied Chem. 47, 223 (1976).CrossRefGoogle Scholar
  33. 30a.
    Britton, G., T.W. Goodwin, W.J.S. Lockley, N.J. Patel, and G. Englert: Stereochemistry of the cyclization reaction in carotenoid biosynthesis: Studies with stable isotopes. Abstracts Fifth Internat. IUPAC Symp. Carotenoids 1978, 5.Google Scholar
  34. 31.
    Britton. G., W.J.S. Lockley, N.J. Patel, T.W. Goodwin, and G. Englert: Use of deuterium labelling to elucidate the stereochemistry of the initial step of the cyclization reaction in zeaxanthin biosynthesis in a Flavobacterium. J.C.S. Chem. Commun. 1977, 665.Google Scholar
  35. 32.
    Brooks, C.J.W., and J.D. Gilbert: Absolute configuration of secondary alcohols. A gas chromatographic modification of Horeau’s method. J.C.S. Chem. Commun. 1973, 194.Google Scholar
  36. 33.
    Brown, B.O., and B.C.L. Weedon: Rubixanthin and gazaniaxanthin. J.C.S. Chem. Commun. 1968, 382.Google Scholar
  37. 34.
    Buchecker, R., N. Arpin, and S. Liaaen-Jensen: Absolute configuration of aleuriaxanthin. Phytochem. 15, 1013 (1976).CrossRefGoogle Scholar
  38. 35.
    Buchecker, R., and C.H. Eugster: Absolute Konfiguration von δ-Carotin aus der Tomatenmutante Del/Del 65-3-54-5. Helv. Chim. Acta 54, 327 (1971).CrossRefGoogle Scholar
  39. 36.
    Buchecker, R., and C.H. Eugster: Absolute Konfiguration von Picrocrocin. Helv. Chim. Acta 56, 1121 (1973).CrossRefGoogle Scholar
  40. 37.
    Buchecker, R., and C.H. Eugster: Absolute Konfiguration von α-Zeacarotin, a-Apo-8-carotinal, und α-Apo-8-carotinol. Helv. Chim. Acta 56, 1124 (1973).CrossRefGoogle Scholar
  41. 38.
    Buchecker, R., C.H. Eugster, H. Kjøsen, and S. Liaaen-Jensen: Absolute configuration of β,ε-caroten-2-ol, β,β -caroten-2-ol and β,β-carotene-2,2′-diol. Acta Chem. Scand. B28, 449 (1974).CrossRefGoogle Scholar
  42. 39.
    Buchecker, R., C.H. Eugster, and C. Litchfield: Carotinoide aus marinen Schwämmen (Porifera): Isolierung und Struktur von sieben Hauptcarotinoiden aus Agelas schmidtii. Helv. Chim. Acta 60, 2780 (1977).CrossRefGoogle Scholar
  43. 40.
    Buchecker, R., P. Hamm, and C.H. Eugster: Absolute Konfiguration von Xanthophyll (Lutein). Helv. Chim. Acta 57, 631 (1974).CrossRefGoogle Scholar
  44. 41.
    Buchecker, R., and S. Liaaen-Jensen: Reaktionen an Allencarotinoiden. Helv. Chim. Acta 58, 89 (1975).CrossRefGoogle Scholar
  45. 42.
    Buchecker, R., and S. Liaaen-Jensen: Absolute configuration of heteroxanthin and diadinoxanthin. Phytochem. 16, 729 (1977).CrossRefGoogle Scholar
  46. 43.
    Buchecker, R., S. Liaaen-Jensen, G. Borch, and H.W. Siegelman: Carotenoids of Anacystis nidulans. Structures of caloxanthin and nostoxanthin. Phytochem. 15, 1015 (1976).CrossRefGoogle Scholar
  47. 43a.
    Buchecker, R., A. Weber, and C.H. Eugster: Stereochemistry of α-doradexanthin and related compounds. Biochemical implications. Abstracts Fifth Internat. IUPAC Symp. Carotenoids 1978, 6.Google Scholar
  48. 44.
    Buchecker, R., H. Yokoyama, and C.H. Eugster: Absolute Konfiguration von Semi-α-carotinon aus Murraya exotica. Helv. Chim. Acta 53, 1210 (1970).CrossRefGoogle Scholar
  49. 45.
    Bu’Lock, J.D., D.J. Austin, G. Snatzke, and L. Hruban: Absolute configuration of trisporic acids and the stereochemistry of cyclization in β-carotene biosynthesis. J.C.S. Chem. Commun. 1970, 255.Google Scholar
  50. 46.
    Cadosch, H., and C.H. Eugster: Beweis der absoluten Konfiguration der Xanthophyll-5,6-epoxide (Luteinepoxide). Helv. Chim. Acta 57, 1472 (1974).CrossRefGoogle Scholar
  51. 46a.
    Cadosch, H., U. Vögeli, P. Rüedi, and C.H. Eugster: Über die Carotinoide Flavoxanthin and Crysanthemaxanthin: 1H-NMR, 13C-NMR und Massen-Spektren und absoluten Konfiguration. Helv. Chim. Acta 61, 783 (1978).CrossRefGoogle Scholar
  52. 47.
    Campbell, R.V.M., L. Crombie, D.A.R. Findley, R.W. King, G. Pattenden, and D.A. Whiting: Synthesis of (±)-presqualene alcohol, (±)-prephytoene alcohol and structurally related compounds. J. Chem. Soc. Perkin I 1975, 897.CrossRefGoogle Scholar
  53. 48.
    Ceccaldi, H.J., DF. Cheesman, and P.F. Zagalsky: Quelques propriétés et caractéristiques de l’ovoverdine. Soc. Biol. Marseille 1966, 582.Google Scholar
  54. 49.
    Chae, C, P.-S. Song, J.E. Johansen, and S. Liaaen-Jensen: Linear dichroic spectra of cross-conjugated carotenals and configurations of in-chain substituted carotenoids. J. Amer. Chem. Soc. 99, 5609 (1977).CrossRefGoogle Scholar
  55. 50.
    Cheesman, D.F.: Ovorubin, a chromoprotein from the eggs of the gastropod mollusc Pomacea canaliculata. Roy. Soc. Proc. B 149, 571 (1958).CrossRefGoogle Scholar
  56. 51.
    Cheesman, D.F., W.L. Lee, and P.F. Zagalsky: Carotenoproteins in invertebrates. Biol. Rev. 42, 132 (1967).CrossRefGoogle Scholar
  57. 52.
    Cheesman, D.F., P.F. Zagalsky, and H.J. Ceccaldi: Purification and properties of crustacyanin. Roy. Soc. Proc. B 164, 130 (1966).CrossRefGoogle Scholar
  58. 53.
    Cheng, J.Y., M. Don-Paul, and N.J. Antia: Isolation of an unusually stable cis-isomer of alloxanthin from a bleached autolyzed culture of Chroomonas salina grown heterotropically on glycerol. Observation on cis-trans isomerization of alloxanthin. Z. Protozool. 21, 761 (1974).Google Scholar
  59. 54.
    Chin, A., and P.S. Song: Electronic spectra of carotenoids: A theoretical analysis of the electronic spectrum of rhodopinal. J. Mol. Spectrosc. 52, 224 (1974).CrossRefGoogle Scholar
  60. 55.
    Cholnoky, L., K. Gyørgyfi, A. Ronai, J. Szabolcs, G. Tóth, G. Galasko, A.K. Mallams, E.S. Waight, and B.C.L. Weedon: Structure of neoxanthin (foliaxanthin). J. Chem. Soc. (C) 1969, 1256.Google Scholar
  61. 56.
    Chopra, A.K., B.P.S. Khambay, H. Madden, G.P. Moss, and B.C.L. Weedon: Synthesis of C50 carotenoids; the structure of decaprenoxanthin. J.C.S. Chem. Commun. 1977, 357.Google Scholar
  62. 57.
    Chopra, A.K., G.P. Moss, and B.C.L. Weedon: Synthesis of the enolic β-diketone carotenoids mytiloxanthin and trikentriorhodin. J.C.S. Chem. Commun. 1977, 467.Google Scholar
  63. 58.
    Cooper, R.D.G., L.M. Jackman, and B.C.L. Weedon: Stereochemistry of capsorubin and synthesis of optically inactive epimers. J. Chem. Soc. (C) 1962, 215.Google Scholar
  64. 59.
    Dabbagh, A.G., and K. Egger: Calthaxanthin — Ein Stereoisomer des Lutein aus Caltha palustris. Z. Pflanzenphysiol. 72, 177 (1974).Google Scholar
  65. 60.
    Davies, B.H.: Solved and unsolved problems of carotenoid formation. Pure and Applied Chem. 51, 623 (1979).CrossRefGoogle Scholar
  66. 61.
    Davies, B.H., and R.F. Taylor: Carotenoid biosynthesis — the early steps. Pure and Applied Chem. 47, 211 (1976).CrossRefGoogle Scholar
  67. 62.
    Davies, J.B., L.M. Jackman, P.T. Siddons, and B.C.L. Weedon: The structure and synthesis of phytoene, phytofluene, ζ-carotene and neurosporene. J. Chem. Soc. (C) 1966, 2154.Google Scholar
  68. 63.
    De Ville, T.E., M.B. Hursthouse, S.W. Russell, and B.C.L. Weedon: Stereochemistry of aliénés. J.C.S. Chem. Commun. 1969, 754.Google Scholar
  69. 64.
    De Ville, T.E., M.B. Hursthouse, S.W. Russell, and B.C.L. Weedon: Absolute configuration of carotenoids. J.C.S. Chem. Commun. 1969, 1311.Google Scholar
  70. 65.
    Elgsaeter, A., J.D. Tauber, and S. Liaaen-Jensen: Carotenoid distribution and caro-tenoprotein of Asterias rubens. Biochim. Biophys. Acta 530, 402 (1978); 531, 357 (1978).Google Scholar
  71. 66.
    Elihl, H.L.: Stereochemistry of carbon compounds, p. 411. New York: Mc Graw-Hill. 1962.Google Scholar
  72. 67.
    Elihl, H.L.: Stereochemie der Kohlenstoffverbindungen, pp. 87, 136. Weinheim: Verlag Chemie. 1966.Google Scholar
  73. 68.
    Englert, G.: A carbon-13 NMR study of cis-trans isomeric vitamins A, carotenoids and related compounds. Helv. Chim. Acta 58, 2367 (1975).CrossRefGoogle Scholar
  74. 69.
    Englert, G., F. Kienzle, and K. Noack: 1H NMR-, 13C-NMR-, UV- und CD-Daten von synthetischen (3S,3′S)-Astaxanthin, seinen 15-cis Isomeren und einigen analogen Verbindungen. Helv. Chim. Acta 60, 1209 (1977).CrossRefGoogle Scholar
  75. 70.
    Eschenmoser, W., and C.H. Eugster: Absolute Konfiguration von Azafrin. Helv. Chim. Acta 58, 1722 (1975).CrossRefGoogle Scholar
  76. 71.
    Eschenmoser, W., and C.H. Eugster: Synthese und Chiralität von (5S,6R)-5,6- Epoxy-5,6-dihydro-β,β-carotin und (5R,6R)-5,6-Dihydro-β,β-carotin-5,6-diol, einen Carotinoid mit ungewöhnlichen Eigenschaften. Helv. Chim. Acta 61, 822 (1978).CrossRefGoogle Scholar
  77. 71a.
    Eschenmoser, W., and C.H. Eugster: Synthesis of optically active carotenoid glycols and epoxides. Abstract Fifth Internat. IUPAC Symp. Carotenoids 1978, 14.Google Scholar
  78. 71b.
    Eugster, C.H.: Characterization, chemistry and stereochemistry of carotenoids. Pure and Applied Chem. 51, 463 (1979).CrossRefGoogle Scholar
  79. 72.
    Eugster, C.H., R. Buchecker, C. Tscharner, G. Uhde, and G. Ohloff: Bestimmung der Chiralität der enantiomeren α-Cyclogeraniumsäuren, α-Cyclogeraniale, α-Jonone, γ-Jonone, α-Carotine, ε-Carotine und verwandte Verbindungen durch chemische Verknüpfungsreaktionen. Helv. Chim. Acta 52, 1729 (1969).CrossRefGoogle Scholar
  80. 73.
    Fahey, D.P., and B.V. Milborrow: The stereochemistry of biosynthesis of decaprenoxanthin in a cell-free system. Phytochem. 17, 2077 (1978).CrossRefGoogle Scholar
  81. 74.
    Faigle, H., and P. Karrer: Die Konfiguration des natürlichen (+)-Capsanthins und des natürlichen Capsorubins. Helv. Chim. Acta 44, 1904 (1961).CrossRefGoogle Scholar
  82. 75.
    Fiksdahl, A., J.T. Mortensen, and S. Liaaen-Jensen: High-pressure liquid chromatography of carotenoids. J. Chromatography 157, 111 (1978).CrossRefGoogle Scholar
  83. 76.
    Fiksdahl, A., J.D. Tauber, S. Liaaen-Jensen, G. Saucy, and G.F. Weber: Steric stability of acetylenic carotenoids. Acta Chem. Scand. 33B, 192 (1979).CrossRefGoogle Scholar
  84. 77.
    Galasko, G., J. Hora, T.P. Toube, B.C.L. Weedon, D. André, M. Barbier, E. Lederer, and V. R. Villanueva: Allenic carotenoids in sea urchins. J. Chem. Soc. (C) 1969, 1264.Google Scholar
  85. 78.
    Goodfellow, D., G.P. Moss, J. Szabolcs, G. Tóth, and B.C.L. Weedon: Configuration of carotenoid epoxides. Tetrahedron Letters 1973, 3925.Google Scholar
  86. 79.
    Goodfellow, D., G.P. Moss, and B.C.L. Weedon: The absolute configuration of lutein. J.C.S. Chem. Commun. 1970, 1578.Google Scholar
  87. 80.
    Goodwin, T.W.: Biosynthesis. In: Carotenoids (Isler, O., ed.), Chap. VII. Basel: Birkhäuser. 1971.Google Scholar
  88. 81.
    Goodwin, T.W.: Biosynthesis of carotenoids and plant triterpenes. Biochem. J. 123, 293 (1971).Google Scholar
  89. 82.
    Goodwin, T.W., and R.J.H. Williams: A mechanism for the cyclization of an acyclic precursor to form β-carotene. Biochem. J. 94, 5 C (1965).Google Scholar
  90. 83.
    Goodwin, T.W., and R.J.H. Williams: A mechanism for the biosynthesis of α-carotene. Biochem. J. 97, 28 C (1965).Google Scholar
  91. 83a.
    Granger, G., B. Maudinas, R. Herbec, and J. Villoutreix: 1H and 13C NMR spectra of cis and trans phytoene isomers. J. Magn. Res. 10, 43 (1973).Google Scholar
  92. 84.
    Hallenstvet, M., R. Buchecker, G. Borch, and S. Liaaen-Jensen: Absolute configuration of β, γ-carotene and biosynthetic implications. Phytochem. 16, 583 (1977).CrossRefGoogle Scholar
  93. 85.
    Hata, M., and M. Hata: Metabolism of injested cynthiaxanthin. Tokohu J. Agr. Res. 21, 183 (1970).Google Scholar
  94. 86.
    Haxo, F.T., J.H. Kycia, G.F. Somers, A. Bennett, and H.W. Siegelman: Peridinin-chlorophyll a-proteins of the dinoflagellate Amphidinium carterae (Plymouth 450). Plant Physiol. 57, 297 (1976).CrossRefGoogle Scholar
  95. 87.
    Hemmer, E., and S. Liaaen-Jensen: Spectroscopic properties of methyl triacetyl α-and β-L-rhamnosides. Acta Chem. Scand. 24, 3019 (1970).CrossRefGoogle Scholar
  96. 88.
    Hertzberg, S., G. Borch, and S. Liaaen-Jensen: Absolute configuration of zeaxanthin dirhamnoside. Arch. Mikrobiol. 110, 95 (1976).Google Scholar
  97. 89.
    Hertzberg, S., G. Borch, and S. Liaaen-Jensen: CD spectra of mono-cis carotenoids. Acta Chem. Scand. 33B, 42 (1979).CrossRefGoogle Scholar
  98. 90.
    Hertzberg, S., and S. Liaaen-Jensen: Absolute configuration of sarcinaxanthin and sarcinaxanthin mono-β-D-glucoside. Isolation of sarcinaxanthin diglucoside. Acta Chem. Scand. B31, 215 (1977).CrossRefGoogle Scholar
  99. 91.
    Hertzberg, S., T. Mortensen, G. Borch, H.W. Siegelman, and S. Liaaen-Jensen: On the absolute configuration of 19′-hexanoyloxyfucoxanthin. Phytochem. 16, 587 (1977).CrossRefGoogle Scholar
  100. 92.
    Hlubucek, J.R., J. Hora, W.S. Russell, T.P. Toube, and B.C.L. Weedon: Stereochemistry and synthesis of the allenic end groups. Absolute configuration of zeaxanthin. J. Chem. Soc. Perkin I 1974, 848.Google Scholar
  101. 93.
    Hora, J., P.T. Toube, and B.C.L. Weedon: Conversion of fucoxanthin into paracentrone. J. Chem. Soc. (C) 1970, 241.Google Scholar
  102. 94.
    Horeau, A.: Principe et application d’une nouvelle methode de determination de configuration dite “par dedoublement partiel”. Tetrahedron Letters 1961, 506.Google Scholar
  103. 95.
    Hsu, W.-J., D.B. Rodriguez, and C.O. Chichester: The conversion of 14C-lutein and 14C-β-carotene in goldfish. Int. J. Biochem. 3, 333 (1971).CrossRefGoogle Scholar
  104. 95a.
    Hursthouse, M.B., and G.P. Moss: X-Ray studies on the stereochemistry of carotenoid end groups. Abstracts Fifth Internat. IUPAC Symp. Carotenoids 1978, 24.Google Scholar
  105. 96.
    Ike, T., J. Inanago, A. Nakano, N. Okukado, and M. Yamaguchi: Total synthesis of natural acetylenic analogues of isorenieratene and renieratene. Bull. Chem. Soc. Jap. 47, 350 (1974).CrossRefGoogle Scholar
  106. 97.
    International Union of Pure and Applied Chemistry: Plenary lectures presented at the Third International Symposium On Carotenoids Other Than Vitamin A. Pure and Applied Chem. 35, 1 (1973).CrossRefGoogle Scholar
  107. 98.
    International Union of Pure and Applied Chemistry: Nomenclature of carotenoids (Rules approved 1974 ). London: Butterworths. 1974.Google Scholar
  108. 99.
    International Union of Pure and Applied Chemistry: Main lectures presented at the Fourth International Symposium on Carotenoids. Pure and Applied Chem. 47, 97 (1976).CrossRefGoogle Scholar
  109. 100.
    International Union of Pure and Applied Chemistry: Main lectures presented at the Fifth International Symposium on Carotenoids. Pure and Applied Chem. 51, 435 (1979).CrossRefGoogle Scholar
  110. 101.
    Isler, O. (ed.): Carotenoids. Basel: Birkhäuser. 1971.Google Scholar
  111. 102.
    Ito, M., R. Masahara, and K. Tsukida: Synthesis of (2S)-β,β-caroten-2-ol. Tetrahedron Letters 1977, 2767.Google Scholar
  112. 103.
    Jautelat, M., J.B. Grutzner, and J.D. Roberts: Natural-abundance 13C nuclear magnetic resonance spectra of terpenes and carotenes. Proc. Nat. Acad. Sci. 65, 288 (1970).CrossRefGoogle Scholar
  113. 104.
    Johansen, J.E.: Chemical studies of selected algal and bacterial carotenoids. Trondheim: Univ. Trondheim. 1977.Google Scholar
  114. 105.
    Johansen, J.E., and S. Liaaen-Jensen: Chemical reactions of allenic carotenoids. Acta Chem. Scand. B 28, 949 (1974).CrossRefGoogle Scholar
  115. 106.
    Johansen, J.E., and S. Liaaen-Jensen: Reactions of diapocarotenals with N-bromosuccinimide and synthetic applications. Acta Chem. Scand. B29, 315 (1975).CrossRefGoogle Scholar
  116. 107.
    Johansen, J.E., and S. Liaaen-Jensen: Total synthesis of bacterioruberin derivatives. Absolute configuration of bacterio-ruberin. Tetrahedron Letters 1976, 955.Google Scholar
  117. 108.
    Johansen, J.E., and S. Liaaen-Jensen: Studies on the absolute configuration of peridinin and dinoxanthin. In: Marine Natural Products Chemistry (Faulkner, D.J., and W.H. Fenical, eds.), p. 225. New York: Plenum. 1977.Google Scholar
  118. 109.
    Johansen, J.E., and S. Liaaen-Jensen: Total synthesis of cross-conjugated carotenals. Tetrahedron 33, 381 (1977).CrossRefGoogle Scholar
  119. 110.
    Karrer, P., and E. Jucker: Carotenoids. New York: Elsevier. 1950.Google Scholar
  120. 111.
    Katayama, T., K. Hirata, H. Yokoyama, and C.O. Chichester: The carotenoids of sea breams. Bull. Jap. Soc. Scient. Fish. 36, 709 (1970).CrossRefGoogle Scholar
  121. 112.
    Katayama, T., H. Yokoyama, and C.O. Chichester: The structures of α-dorade-xanthin and (β-doradexanthin. Int. J. Biochem. 1, 438 (1970).CrossRefGoogle Scholar
  122. 113.
    Kelly, M., S.A. Andresen, and S. Liaaen-Jensen: The stereochemistry of lycoxanthin and lycophyll. Acta Chem. Scand. 25, 1607 (1971).CrossRefGoogle Scholar
  123. 114.
    Khare, A., G.P. Moss, and B.C.L. Weedon: Mytiloxanthin and isomytiloxanthin, two novel acetylenic carotenoids. Tetrahedron Letters 1973, 3921.Google Scholar
  124. 115.
    Khatoon, N., D.E. Loeber, T.P. Toube, and B.C.L. Weedon: Stereochemistry of phytoene. J.C.S. Chem. Commun. 1972, 996.Google Scholar
  125. 116.
    Kienzle, F., and H.J. Mayer: Synthese von (3S,3′S)-Astaxanthin. Helv. Chim. Acta 61, 2609 (1978).CrossRefGoogle Scholar
  126. 117.
    Kjøsen, H., and S. Liaaen-Jensen: Application of the tris (dipivalomethanato) europium (III) nuclear magnetic shift reagent to carotenoids. Acta Chem. Scand. 26, 2185 (1972).CrossRefGoogle Scholar
  127. 118.
    Kjøsen, H., N. Arpin, and S. Liaaen-Jensen: The carotenoids of Trentepohlia iolithus. Isolation of β,β-caroten-2-ol, β,ε-caroten-2-ol and β,ε-carotene-2,2′-diol. Acta Chem. Scand. 26, 3053 (1972).CrossRefGoogle Scholar
  128. 119.
    Kjøsen, H., and S. Liaaen-Jensen: Total synthesis of aleuriaxanthin. Acta Chem. Scand. 27, 2495 (1973).CrossRefGoogle Scholar
  129. 120.
    Kleinig, H., W. Heumann, W. Meister, and G. Englert: New carotenoids from Rhizobium lupini. Helv. Chim. Acta 60, 254 (1977).CrossRefGoogle Scholar
  130. 121.
    Kleinig, H., W. Meister, and G. Englert: The effect of nicotine on the carotenoid pattern of Rhizobium lupini. Arch. Microbiol. 119, 71 (1978).CrossRefGoogle Scholar
  131. 122.
    Koka, P., and P.-S. Song: The chromophore topography and binding environment of peridinin-chlorophyll a — protein complexes from marine dinoflagellate algae. Biochim. Biophys. Acta 495, 220 (1977).Google Scholar
  132. 123.
    Kuhn, R., and H. Kühn: Crustacyanin, ein Chromoproteid aus Hummerpanzer. European J. Biochem. 2, 349 (1967).CrossRefGoogle Scholar
  133. 123a.
    Lee, T.Y.: Spectroscopic characterization of crustacyanin. Abstracts Fifth Internat. IUPAC Symp. Carotenoids 1978, 32.Google Scholar
  134. 123b.
    Lee, W.L. (ed.): Carotenoproteins in animal coloration. Stroudsbourg: Dowden, Hutchinson and Ross. 1977.Google Scholar
  135. 124.
    Leuenberger, H.G.H., W. Bogoth, E. Widmer, and R. Zell: Synthese der chiralen Schlüsselverbindung (4R,6R)-4-hydroxy-2,2,6-trimethylcyclohexanon. Helv. Chim. Acta 59, 1832 (1976).CrossRefGoogle Scholar
  136. 125.
    Liaaen-Jensen, S.: The constitution of some bacterial carotenoids and their bearing on biosynthetic problems. Kgl. Norske Vit. Selsk. Skr. No. 8, 1962.Google Scholar
  137. 126.
    Liaaen-Jensen, S.: New Structures. Pure and Applied Chem. 47, 129 (1976).CrossRefGoogle Scholar
  138. 127.
    Liaaen-Jensen, S.: Chemistry of carotenoid pigments. In: Photosynthetic Bacteria (Clayton, R.K., and W.R. Sistrom, eds.), Chap. 12. New York: Plenum. 1979.Google Scholar
  139. 128.
    Liaaen-Jensen, S.: Marine Carotenoids. In: Marine natural products. Chemical and biological prospects (Scheuer, P., ed.), Vol. 2, Chap. 1. New York: Academic Press. 1979.Google Scholar
  140. 129.
    Liu, I.-S., T.H. Lee, H. Yokoyama, K.L. Simpson, and C.O. Chichester: Isolation and identification of 2-hydroxy-plectaniaxanthin from Rhodotorula aurantiaca. Phyto-chem. 12, 2953 (1973).Google Scholar
  141. 130.
    Liu, R.S.H., A.E. Asato, and M. Denny: New geometric isomers of vitamin A and carotenoids. 5,7-cis-3-dehydroretinal and 7-cis-3-dehydro-C18-ketone from direct irradiation of the trans isomers in polar solvents. J. Amer. Chem. Soc. 99, 895 (1977).Google Scholar
  142. 131.
    Mayer, H.: Synthesis of optically active carotenoids and related compounds. Pure and Applied Chem. 51, 535 (1979).CrossRefGoogle Scholar
  143. 132.
    Mayer, H., W. Boguth, H.G.W. Leuenberger, E. Widmer, and R. Zell: The synthesis of all-trans-(3R,3′R)-zeaxanthin. Abstr. Fourth Int. IUPAC Symp. Carot. Berne 1975, 43.Google Scholar
  144. 133.
    Mayer, H., and O. Isler: Total synthesis. In: Carotenoids (Isler, O., ed.), Chap. 6. Basel: Birkhäuser. 1971.Google Scholar
  145. 134.
    Mills, J.A.: Correlations between monocyclic and polycyclic unsaturated compounds from molecular rotation differences. J. Chem. Soc. 1952, 4976.Google Scholar
  146. 135.
    Moss, G.P.: Carbon-13 NMR spectra of carotenoids. Pure and Applied Chem. 47, 97 (1976).CrossRefGoogle Scholar
  147. 135a.
    Moss, G.P.: Physico-chemical and synthetic studies on carotenoids. Pure and Applied Chem. 51, 507 (1979).CrossRefGoogle Scholar
  148. 136.
    Moss, G.P., J. Szabolcs, G. Töth, and B.C.L. Weedon: The stereochemistry of the carotenoid violeoxanthin. Acta Chim. Acad. Sci. Hung. 87, 301 (1975).Google Scholar
  149. 137.
    Müller, H., and P. Karrer: Methyläther von Carotinoiden. Konfiguration des Azafrins. Helv. Chim. Acta 48, 291 (1965).CrossRefGoogle Scholar
  150. 138.
    Müller, R.K., H.J. Mayer, K. Noack, and J.J. Daly: Total synthesis of (3S,3′S)-and (3R,3′R)-actinioerythrin. To be published.Google Scholar
  151. 139.
    Müller, R.K., H.J. Mayer, K. Noack, J.J. Daly, D.J. Tauber, and S. Liaaen-Jensen: Absolute configuration of actinioerythrin. Helv. Chim. Acta 61, 2881 (1978).CrossRefGoogle Scholar
  152. 140.
    Nakagawa, K., R. Konata, and T. Nakata: Oxidation with nickel peroxides. I. Oxidation of alcohols. J. Org. Chem. 27, 1597 (1962).CrossRefGoogle Scholar
  153. 141.
    Nicoara, E., G. Illyes, M. Suteo, and C. Bodea: The conformation of crusta-xanthin. Rev. roum. chim. 12, 547 (1967).Google Scholar
  154. 142.
    Noggle, J.H., and R.E. Schirmer: The nuclear Overhauser effects and chemical applications. New York: Academic Press. 1971.Google Scholar
  155. 143.
    Nybraaten, G., and S. Liaaen-Jensen: New carotenoid epoxides from Trentepohlia iolithus. Acta Chem. Scand. B 28, 483 (1974).CrossRefGoogle Scholar
  156. 144.
    Nybraaten, G., and S. Liaaen-Jensen: Improved O-methylation of carotenoids. Acta Chem. Scand. B24, 584 (1974).CrossRefGoogle Scholar
  157. 145.
    Pattenden, G., J.E. Way, and B.C.L. Weedon: Synthesis of methyl natural bixin. J. Chem. Soc. (C) 1970, 235.Google Scholar
  158. 146.
    Pattenden, G., and B.C.L. Weedon: Synthesis of cis- and di-cis-polyenes by reactions of the Wittig type. J. Chem. Soc. (C) 1968, 1984.Google Scholar
  159. 147.
    Porter, J.W.: Enzymatic synthesis of carotenes. Pure and Applied Chem. In press.Google Scholar
  160. 148.
    Puntervold, O., and S. Liaaen-Jensen: Synthesis of lycopen-20-al and rhodopin- 20(20′)-al. Acta Chem. Scand. B 28, 1096 (1974).CrossRefGoogle Scholar
  161. 149.
    Ramamurthy, V., and R.S.H. Liu: 7-cis Isomers of retinal via 7-cis- and 7,9-di-cis-β-C18-tetraene ketones. Tetrahedron 31, 201 (1975).CrossRefGoogle Scholar
  162. 150.
    Ramamurthy, V., G. Tustin, C.C. Yau, and R.S. H. Liu: Preparation of sterically hindered geometric isomers of 7-cis-β-ionyl and β-ionylidene derivatives in the vitamin A series. Tetrahedron 31, 193 (1975).CrossRefGoogle Scholar
  163. 151.
    Rønneberg, H., G. Borch, D.L. Fox, and S. Liaaen-Jensen: Alloporin — a new carotenoprotein. Comp. Biochem. Physiol. 62B, 309 (1979).Google Scholar
  164. 152.
    Rønneberg, H., G. Borch, S. Liaaen-Jensen, H. Matsutaka, and T. Matsuno: Tunaxanthin. Acta Chem. Scand. 32B, 621 (1978).CrossRefGoogle Scholar
  165. 153.
    Rønneberg, H., and S. Liaaen-Jensen: On the absolute configuration of plectania-xanthin. Acta Chem. Scand. To be published.Google Scholar
  166. 153a.
    Saucy, G., G. Weber, and J. Gutzwiller: Total synthesis of all-trans and 9,9′-di-cis-alloxanthin. Helv. Chim. Acta. To be published.Google Scholar
  167. 154.
    Schmidt, K.: Biosynthesis of carotenoids. In: Photosynthetic bacteria (Clayton, R.K., and W.R. Sistrom, eds.), Chap. 39. New York: Plenum. 1979.Google Scholar
  168. 155.
    Schmidt, K., G.W. Francis, and S. Liaaen-Jensen: New carotenoid glucosides and remarkable C43-carotenoid artefacts of cross-conjugated carotenals. Acta Chem. Scand. 25, 2476 (1971).CrossRefGoogle Scholar
  169. 156.
    Schwieter, U., and S. Liaaen-Jensen: Stereochemistry of the terminal double bonds of dehydrogenans-P 439. Acta Chem. Scand. 23, 1057 (1969).CrossRefGoogle Scholar
  170. 157.
    Scopes, P.M.: Application of the chiroptical techniques to the study of natural products. Fortschr. Chem. Org. Naturstoffe 32, 167 (1975).CrossRefGoogle Scholar
  171. 157a.
    Snatzke, G., F. Snatzke, and S. Liaaen-Jensen: Circular dichroism: Carotenoid polyenes. To be published.Google Scholar
  172. 158.
    Stewart, I.: Provitamin A and carotenoid content of citrus juices. J. Agr. Food Chem. 25, 1132 (1977).CrossRefGoogle Scholar
  173. 159.
    Stewart, I., and T.A. Wheaton: Continuous flow separation of carotenoids by liquid chromatography. J. Chromatog. 55, 325 (1971).CrossRefGoogle Scholar
  174. 160.
    Strain, H.H., W.A. Svec, K. Aitzetmüller, M.-C. Grandolfo, J.J. Katz, H. Kjøsen, S. Norgärd, S. Liaaen-Jensen, F.T. Haxo, P. Wegfahrt, and H. Rapoport: The structure of peridinin — the characteristic dinoflagellate carotenoid. J. Amer. Chem. Soc. 43, 1823 (1971).Google Scholar
  175. 161.
    Strain, H.H., W.A. Svec, P. Wegfahrt, M. Rapoport, F.T. Haxo, S. Norgärd, H. Kjøsen, and S. Liaaen-Jensen: Structural studies on peridinin. Part 1. Structure elucidation. Acta Chem. Scand. 330, 109 (1976).CrossRefGoogle Scholar
  176. 162.
    Straub, O.: Key to carotenoids. Lists of natural carotenoids. Basel: Birkhäuser. 1976.Google Scholar
  177. 163.
    Szabolcs, J.: Some studies on the stereochemistry of carotenoids. Pure and Applied Chem. 47, 147 (1976).CrossRefGoogle Scholar
  178. 164.
    Tomes, M.L.: Competitive effect of the β- and δ-carotene genes on α- or β-ionone ring formation in the tomato. Genetics 1967, 227.Google Scholar
  179. 165.
    Tscharner, C., C.H. Eugster, and P. Karrer: Synthese der optisch aktiven α-Carotine. Helv. Chim. Acta 40, 1676 (1957).CrossRefGoogle Scholar
  180. 166.
    Tscharner, C., C.H. Eugster, and P. Karrer: Synthese des (+)- und des (—)-ε-Carotine. Helv. Chim. Acta 41, 32 (1958).CrossRefGoogle Scholar
  181. 167.
    Ueda, I., and W. Nowacki: Crystal structure of capsanthin di-p-bromobenzoate. Z. Krist. 140, 190 (1974).CrossRefGoogle Scholar
  182. 168.
    Veerman, A., G. Borch, R. Pedersen, and S. Liaaen-Jensen: Chirality of astaxanthin of different biosynthetic origin. Acta Chem. Scand. B 29, 525 (1975).CrossRefGoogle Scholar
  183. 169.
    Vetter, W., G. Englert, N. Rigassi, and U. Schwieter: Spectroscopic methods. In: Carotenoids (Isler, O., ed.), Chap. IV. Basel: Birkhäuser. 1971.Google Scholar
  184. 170.
    Vögeli, V., W. Eschenmoser, and C.H. Eugster: Strukturbestimmung von O- Methylazafrin-methylester durch 13C-NMR-Spektroskopie. Helv. Chim. Acta 58, 2044 (1975).CrossRefGoogle Scholar
  185. 171.
    Walton, T.J., G. Britton, and T.W. Goodwin: Biosynthesis of xanthophyll in higher plants. Stereochemistry of hydroxylation at C-3. Biochem. J. 112, 383 (1969).Google Scholar
  186. 172.
    Weedon, B.C.L.: Spectroscopic methods for structural elucidation of carotenoids. Fortschr. Chem. Org. Naturstoffe 27, 81 (1969).Google Scholar
  187. 173.
    Weedon, B.C.L.: Allenic and acetylenic carotenoids. Rev. Pure Appl. Chem. (Australia) 20, 51 (1970).Google Scholar
  188. 174.
    Weedon, B.C.L.: Stereochemistry. In: Carotenoids (Isler, O., ed.), Chap. 5. Basel: Birkhäuser. 1971.Google Scholar
  189. 175.
    Weedon, B.C.L.: Some recent studies on carotenoids and related compounds. Pure and Applied Chem. 35, 113 (1973).CrossRefGoogle Scholar
  190. 176.
    Weedon, B.C.L.: Synthesis of carotenoids and related polyenes. Pure and Applied Chem. 47, 161 (1976).CrossRefGoogle Scholar
  191. 177.
    Wehrli, F.W., and T. Wirthlin: Interpretation of carbon-13 NMR spectra. London: Heyden. 1976.Google Scholar
  192. 178.
    Williams, R.J.H., G. Britton, and T.W. Goodwin: A possible mechanism for the biosynthesis of eschscholtzxanthin. Biochim. Biophys. Acta 124, 197 (1966).CrossRefGoogle Scholar
  193. 179.
    Williams, R.J.H., G. Britton, and T.W. Goodwin: The biosynthesis of cyclic carotenes. Biochem. J. 105, 99 (1967).Google Scholar
  194. 180.
    Zagalsky, P.F.: Carotenoid-protein complexes. Pure and Applied Chem. 47, 103 (1976).CrossRefGoogle Scholar
  195. 181.
    Zechmeister, L.: Cis-trans isomeric carotenoid pigments. Fortschr. Chem. Org. Naturstoffe 18, 223 (1960).Google Scholar
  196. 182.
    Zechmeister, L.: Cis-trans isomeric carotenoids, vitamins A and arylpolyenes. Wien: Springer. 1962.Google Scholar

Copyright information

© Springer-Verlag/Wien 1980

Authors and Affiliations

  • S. Liaaen-Jensen
    • 1
  1. 1.Organic Chemistry Laboratories, Norwegian Institute of TechnologyUniversity of TrondheimNorway

Personalised recommendations