Carbohydrate Derivatives in the Asymmetric Synthesis of Natural Products

  • B. Fraser-Reid
  • R. C. Anderson
Part of the Fortschritte der Chemie organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products book series (FORTCHEMIE (closed), volume 39)


Traditionally, carbohydrate derivatives have been utilized in the mainstream of organic chemistry primarily for studies relating to stereochemical and conformational problems. This is not surprising since these aspects have always been a prime area of concern to sugar chemists because of the role they play in the reactions of sugars. Indeed it was in this connection that the term “conformation” was coined by Haworth in 1929 (34). The work of Barton and Hassell in the late 1940’s on the development of conformational analysis of six membered rings is, of course, well known. However, even prior to this, Reeves had begun his systematic work on the shapes of sugar molecules in solution (78, 79), and it was further concern with the latter that led Lemieux to undertake an examination of sugar acetates by 1H n. m. r. (pmr) spectroscopy in 1957 (53). Thus n. m. r. spectroscopy as practiced in organic chemistry today, owes its origins and much of its early development (54) to the availability of a wealth of well characterized sugar derivatives. 13C n. m. r. (cmr) spectroscopy is similarly indebted (74).


Mandelic Acid Asymmetric Synthesis Anomeric Effect Lithium Aluminum Hydride Benzyl Ether 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, R.C., and B. Fraser-Reid: A Synthesis of Optically Pure Avenaciolide from D-Glucose. The Correct Stereochemistry of the Natural Product. J. Amer. Chem. Soc. 97, 3870 (1975).CrossRefGoogle Scholar
  2. 2.
    Anderson, R.C., and B. Fraser-Reid: A Synthesis of Naturally Occurring (—)-Isoavenaciolide. Tetrahedron Letters 1977, 2865.Google Scholar
  3. 3.
    Anderson, R.C., and B. Fraser-Reid: Unpublished results.Google Scholar
  4. 4.
    Barton, D.H.R., and S.W. McCombie: A New Method for the Deoxygenation of Secondary Alcohols. J. Chem. Soc. Perkin Trans. I, 1975, 1574.Google Scholar
  5. 5.
    Bayne, S., and S.A. Fewster: The Osones. Advances in Carbohydrate Chemistry 11, 43 (1956), Academic Press: New York; Theander, O.: Dicarbonyl Carbohydrates. Advances in Carbohydrate Chemistry 17, 233 (1962), Academic Press: New York and London.Google Scholar
  6. 6.
    Bhacca, N.S., D. Horton, and H. Paulsen: The Conformation of α-D-Idopyranose Pentaacetate. J. Organ. Chem. (U.S.A.) 33, 2484 (1968).CrossRefGoogle Scholar
  7. 7.
    Bishop, C.T., and F.P. Cooper: Glycosidation of Sugars. 1. Formation of Methyl- D-Xylosides. Can. J. Chem. 40, 224 (1962).CrossRefGoogle Scholar
  8. 8.
    Bobbit, J.M.: Periodate Oxidation of Carbohydrates. Advances in Carbohydrate Chemistry 11, 1 (1956), Academic Press: New York; Guthrie, R.D.: The “Di-aldehydes” From the Periodate Oxidation of Carbohydrates. Advances in Carbohydrate Chemistry 16, 105 (1961), Academic Press: New York and London.Google Scholar
  9. 9.
    Bonner, W.A.: The Stereochemical Configuration of the 1-C-Phenyl-D-pentitols. J. Amer. Chem. Soc. 73, 3126 (1951).CrossRefGoogle Scholar
  10. 10.
    Brookes, D., B.K. Tidd, and W.B. Turner: Avenaciolide, an Antifungal Lactone from Aspergillus avenaceus. J. Chem. Soc. 1963, 5385.Google Scholar
  11. 11.
    Corey, E.J., M. Shibasaki, and J. Knolle: Simple Stereocontrolled Synthesis of Thromboxane B2 from D-Glucose. Tetrahedron Letters 1977, 1625.Google Scholar
  12. 12.
    Corey, E.J., and J.W. Suggs: A Method for Catalytic Dehalogenations via Trialkyltin Hydrides. J. Organ. Chem. 40, 2554 (1975); Corey, E.J., T.K. Schaaf, W. Huber, U. Koelliker, and N.M. Weinshenker: Total Synthesis of Prostaglandins F2x and E2 as the Naturally Occurring Forms. J. Amer. Chem. Soc. 92, 397 (1970).CrossRefGoogle Scholar
  13. 13.
    Curtis, W.D., D.A. Laidler, J.F. Stoddard, J.B. Wolstenholme, and G.H. Jones: Enantiomeric Differentiation by a Chiral Symmetrical Crown Derived from L-Iditol. Carbohyd. Res. 57, C 17 (1977); Laidler, C.L., and J.F. Stoddard: Chiral Asymmetrical Crown-Ethers. Carbohyd. Res. 55, C 17 (1977); Laidler, D.A., and J.F. Stoddard: Stereoselectivity in Complexation of Primary Alkylammonium Cations by the Diastereotopic Faces of Chiral Asymmetric Crowns. Chem. Commun. 1977, 481.CrossRefGoogle Scholar
  14. 14.
    Defaye, J., and J. Hildesheim: Synthèses dans la Série des 2,5-Anhydrides des Sucres. Solvolyse d’Esters Sulfoniques. Tetrahedron Letters 1968, 313.Google Scholar
  15. 15.
    David, S., O. Eisenstein, W.J. Hehre, L. Salem, and R. Hoffman: Superjacent Orbital Control. An Interpretation of the Anomeric Effect. J. Amer. Chem. Soc. 95, 3806 (1973).CrossRefGoogle Scholar
  16. 16.
    Eastwood, F.W., K.J. Harrington, J.S. Josan, and J.L. Puran: The Conversion of 2-Dimethylamino-l,3-Dioxolanes into Alkenes. Tetrahedron Letters 1970, 5223.Google Scholar
  17. 17.
    Edward, J.T.: Stability of Glycosides to Acid Hydrolysis. Chem. and Ind. 1955, 1102.Google Scholar
  18. 18.
    Eliel, E.L.: Conformational Analysis in Heterocyclic Systems: Recent Results and Applications. Angew. Chem. Intern. 11, 739 (1972).CrossRefGoogle Scholar
  19. 19.
    Elliott, M. (ed.): Synthetic Pyrethroids: A Symposium Sponsored by the Division of Pesticide Chemistry at the 172nd Meeting of the American Chemical Society, San Francisco, Calif., Aug. 30–31, 1976; ACS: Wash., D.C., 1977.Google Scholar
  20. 20.
    Ferrier, R.J., and N. Vethaviyasar: Unsaturated Carbohydrates. Part XVII. Synthesis of Branched-Chain Sugar Derivatives by Application of the Claisen Rearrangement. J. Chem. Soc. Perkin I 1973, 1791.CrossRefGoogle Scholar
  21. 21.
    Fischer, E.: Uber die Verbindungen der Zucker-Arten mit den Mercaptanen. Chem. Ber. 27, 673 (1894).CrossRefGoogle Scholar
  22. 22.
    Fitzsimmons, B., and B. Fraser-Reid: Unpublished Results.Google Scholar
  23. 23.
    Fraser-Reid, B.: Some Progeny of 2,3-Unsaturated Sugars — They Little Resemble Grandfather Glucose. Accts. Chem. Res. 8, 192 (1975).CrossRefGoogle Scholar
  24. 24.
    Fraser-Reid, B., and B.J. Carthy: The Synthesis of Some Cyclopropylcarbonyl Glycopyranosides. Can. J. Chem. 50, 2928 (1972).CrossRefGoogle Scholar
  25. 25.
    Fraser-Reid, B., N.L. Holder, D.R. Hicks, and D.L. Walker: Synthetic Applications of the Photochemically Induced Addition of Oxycarbinyl Species to Enones. Part I. The Addition of Simple Alcohols. Can. J. Chem. 55, 3978 (1977).CrossRefGoogle Scholar
  26. 26.
    Fraser-Reid, B., A. McLean, E.W. Usherwood, and M. Yunker: Pyranosiduloses. II. The Synthesis and Properties of Some Alkyl 2,3-dideoxy-2-enopyranosid-4-uloses. Can. J. Chem. 48, 2877 (1970).CrossRefGoogle Scholar
  27. 27.
    Fraser-Reid, B., and A. Sherk: Unpublished results.Google Scholar
  28. 28.
    Gore, N.E., G.T. Pearce, and R.M. Silverstein: Relative Stereochemistry of Multi-striatin (2,4-Dimethyl)-5-ethyl-6,8-dioxabicyclo [3.2.1] Octane. J. Org. Chem. (U.S.A.) 40, 1705 (1975).CrossRefGoogle Scholar
  29. 29.
    Hall, C.R., and T.D. Inch: The Preparation and Absolute Configuration of Some Chiral O,S-Dialkyl Phosphoramidothioates. Tetrahedron Letters 1977, 3761; Hall, C.R., and T.D. Inch: Acid and Base Catalysed Alcoholysis of Some Chiral O,S- Dialkyl Phosphoramidothioates. Tetrahedron Letters 1977, 3765.Google Scholar
  30. 30.
    Hanessian, S., P. Dextrase, A. Fougerousse, and Y. Guidon: Synthese Stereo-controlee Des Precurseurs Chriaux des 11-Oxaprostaglandines. Tetrahedron Letters 1974, 3983.Google Scholar
  31. 31.
    Hanessian, S., and P. Lavallee: A Stereospecific, Total Synthesis of Thromboxane B2. Can. J. Chem. 55, 562 (1977).CrossRefGoogle Scholar
  32. 32.
    Hanessian, S., and G. Rancourt: Carbohydrates as Chiral Intermediates in Organic Synthesis. Two Functionalized Chemical Precursors Comprising Eight of the Ten Chiral Centers of Erythronolide A. Can. J. Chem. 55, 1111 (1977).CrossRefGoogle Scholar
  33. 33.
    Hanessian, S.G., G. Rancourt, and Y. Guindon: Assembly of the Carbon Skeletal Framework of Erythronolide A. Can. J. Chem. 56, 1843 (1978)CrossRefGoogle Scholar
  34. 34.
    Haworth, W.N.: The Constitution of Sugars. London: Arnold. 1929.Google Scholar
  35. 35.
    Hernandez, O.: Chiral Synthesis of Thromboxane B2 Intermediates: Tetrahedron Letters 1978, 219.Google Scholar
  36. 36.
    Hicks, D.R., and B. Fraser-Reid: Synthesis of One Enantiomer, the Other Enantiomer, and a Mixture of Both Enantiomers of Frontalin from a Derivative of Methyl-α-D-glucopyranoside. J. Chem. Soc. Chem. Commun. 1976, 869.Google Scholar
  37. 37.
    Hicks, D.R., and B. Fraser-Reid: Selective Sulphonylation with N-Tosylimidazole. A One-Step Preparation of Methyl 2,3-Anhydro-4,6-O-benzylidene-α-D-mannopyranoside. Synthesis 1974, 203.Google Scholar
  38. 38.
    Hicks, D.R., and B. Fraser-Reid: The 2- and 3-C-Methyl Derivatives of Methyl 2,3-Dideoxy-α-D-erythro-hex-2-enopyranosid-4-ulose. Can. J. Chem. 53, 2017 (1975).CrossRefGoogle Scholar
  39. 39.
    Holder, N.L., and B. Fraser-Reid: The Synthesis of Some Alkyl Hex-3-enopyrano-siduloses. Can. J. Chem. 51, 3357 (1973).CrossRefGoogle Scholar
  40. 40.
    Holland, C.V., D. Horton, and J.S. Jewell: The Favored Conformation of Tri-O-acetyl-β-D-Xylopyranosyl Chloride. An All-Axial Tetrasubstituted Six-Membered Ring. J. Org. Chem. (U.S.A.) 32, 1818 (1967).CrossRefGoogle Scholar
  41. 41.
    Hough, L., and T.J. Taylor: 1: 1-Diethylsulphonyl Derivatives of L-Rhamnose and Their Conversion into 5-Deoxy-L-Arabinose. J. Chem. Soc. 1955, 3544.Google Scholar
  42. 42.
    Inch, T.D.: The Use of Carbohydrates in the Synthesis and Configurational Assignments of Optically Active, Non-carbohydrate Compounds. Advances in Carbohydrate Chemistry and Biochemistry 27, 191 (1972), Academic Press: New York and London.Google Scholar
  43. 43.
    Jeffrey, G.A., J.A. Pople, and L. Radom: The Application of ab initio Molecular Orbital Theory to the Anomeric Effect. A Comparison of Theoretical Predictions and Experimental Data on Conformations and Bond Lengths in Some Pyranoses and Methyl Pyranosides. Carbohydr. Res. 25, 117 (1972).CrossRefGoogle Scholar
  44. 44.
    Jones, J.K.N., and J.L. Thompson: A Synthesis of 5,6-Dideoxy-D-Xylohexose (5-Deoxy-5-C-Methyl-D-Xylose). Can. J. Chem. 35, 955 (1957).CrossRefGoogle Scholar
  45. 45.
    Karplus, M.: Contact Electron-Spin Coupling of Nuclear Magnetic Moments. J. Chem. Phys. 30, 11 (1959); Karplus, M.: Vicinal Proton Coupling in Nuclear Magnetic Resonance. J. Amer. Chem. Soc. 85, 2870 (1963).CrossRefGoogle Scholar
  46. 46.
    Kato, M., M. Kageyama, R. Tanaka, K. Kawahara, and A. Yoshikoshi: Synthetic Study of (±)-Canadensolide and Related Dilactones. Double Lactonization of Unsaturated Dicarboxylic Acids via Acyl Hypoiodite Intermediates. J. Organ. Chem. (U.S.A.) 40, 1932 (1975).CrossRefGoogle Scholar
  47. 47.
    Kinzer, G.W., A.F. Fetiman, Jr., T.F. Page, Jr., R.L. Foltz, J.P. Vite, and G.B. Pitman: Bark Beetle Attractants: Identification, Synthesis and Field Bioassay of a New Compound Isolated from Dendroctonus. Nature (London) 221, 477 (1969).CrossRefGoogle Scholar
  48. 48.
    Kocienski, P.J., and R.W. Ostrow: A Stereoselective Total Synthesis of exo- and endo-Brevicomin. J. Organ. Chem. (U.S.A.) 41, 398 (1976).CrossRefGoogle Scholar
  49. 49.
    Konotshita, M., and S. Mariyama: Synthesis of (2R,3S,4S)-4-Amino-3-hydroxy-2- methyl-5 (3-pyridyl)-pentanoic Acid Present in Antibiotic Pyridomycin. Bull. Soc. Chem. Japan. 48, 2081 (1975).CrossRefGoogle Scholar
  50. 50.
    Lemieux, R.U., L. Anderson, and A.H. Conner: The Mutarotation of 2-Deoxy-ß- D-erythro-Pentose (2-Deoxy-ß-D-Ribose). Conformations, Kinetics and Equilibria. Carbohydr. Res. 20, 59 (1971).CrossRefGoogle Scholar
  51. 51.
    Lemieux, R.U., and J. Howard: The Absolute Configuration of Dextro-I-Deuterio- ethanol. Can. J. Chem. 41, 308 (1963).CrossRefGoogle Scholar
  52. 52.
    Lemieux, R.U., and S. Koto: The Conformational Properties of Glycosidic Linkages. Tetrahedron 30, 1933 (1974); Bailey, W.F., and E.L. Eliel: Conformational Analysis. XXIX. 2-Substituted and 2,2-Disubstituted 1,3-Dioxanes. The Generalized and Reverse Anomeric Effects. J. Amer. Chem. Soc. 96, 1798 (1974); Anet, F.A.L., and I. Yavari: Generalized Anomeric Effect and Barrier to Internal Rotation about the Oxygen-Methylene Bond in Chloromethyl Ether. J. Amer. Chem. Soc. 99, 6752 (1977).CrossRefGoogle Scholar
  53. 53.
    Lemieux, R.U., R.K. Kullnig, H.J. Bernstein, and W.G. Schneider: Configurational Effects in the Proton Magnetic Resonance Spectra of Acetylated Carbohydrates. J. Amer. Chem. Soc. 79, 1005 (1957).CrossRefGoogle Scholar
  54. 54.
    Lemieux, R.U., R.K. Kullnig, H.J. Bernstein, and W.G. Schneider: Configurational Effects on the Proton Magnetic Resonance Spectra of Six-membered Ring Compounds. J. Amer. Chem. Soc. 80, 6098 (1958).CrossRefGoogle Scholar
  55. 55.
    Lemieux, R.U., J.D. Stevens, and R.R. Fraser: Observations on the Karplus Curve in Relation to the Conformation of the 1,3-Dioxolane Ring. Can. J. Chem. 40, 1955 (1962).CrossRefGoogle Scholar
  56. 56.
    Lesage, S., and A.S. Perlin: Synthesis and Stereochemistry of 2-Pyrone Derivatives Related to Some Fungal Metabolites. Can. J. Chem. 56, 2889 (1978).CrossRefGoogle Scholar
  57. 57.
    Levene, P.A., A.L. Raymond, and R.T. Dillon: Glucoside Formation in the Commoner Monoses. J. Biol. Chem. 95, 699 (1932).Google Scholar
  58. 58.
    Lichtenthaler, F.W.: Konfiguration der bei Cyclisierung von 6-Nitro-D-glucose und -L-idose gebildeten Desoxynitroinosite und ihre Isomerisierungen mit Alkali. Chem. Ber. 94, 3071 (1961); Grosheintz, J.M., and H.O.L. Fischer: Cyclization of 6-Nitrodesoxyaldohexoses to Nitrodeoxyinositols. J. Amer. Chem. Soc. 70, 1479 (1948); Kovar. J., and H.H. Baer: Cyclisations of Dialdehydes with Nitromethane. XV. Synthesis of Four Stereoisomeric Deoxynitroinositol Monomethyl Ethers. Can. J. Chem. 51, 1801 (1973).CrossRefGoogle Scholar
  59. 59.
    Los, J.M., L.B. Simpson, and K. Wiesner: The Kinetics of Mutarotation of D-Glucose with Consideration of an Intermediate Free-aldehyde Form. J. Amer. Chem. Soc. 78, 1564 (1956); Los, J.M., and K. Wiesner: A Polarographic Investigation of the Mechanism of Mutarotation of D-Glucose. J. Amer. Chem. Soc. 75, 6346 (1956).CrossRefGoogle Scholar
  60. 60.
    Lourens, G.J., and J.M. Koekemoer: The Novel Stereospecilic Synthesis of 11-Oxa- prostaglandin Fx. Tetrahedron Letters 1975, 3719.Google Scholar
  61. 61.
    Mattes, K.C., M.T. Hsia, C.R. Hutchinson, and S.A. Sisk: A Useful Synthon for Elaboration Into Iridoids and Alkaloids. Tetrahedron Letters 1977, 3541.Google Scholar
  62. 62.
    Mills, J.A.: The Stereochemistry of Cyclic Derivatives of Carbohydrates. Advan. Carbohydr. Chem. 10, 1 (1955).CrossRefGoogle Scholar
  63. 63.
    Nelson, N.A., and R.W. Jackson: Total Synthesis of Thromboxane B2. Tetrahedron Letters 1976, 3275; Kelly, R.C., I. Schletter, and S.J. Stein: Synthesis of Thromboxane B2. Tetrahedron Letters 1976, 3279.Google Scholar
  64. 64.
    Ness, R.K., and H.G. Fletcher, Jr.: 2-Deoxy-D-erythro-pentose. X. Synthesis of l,4-Anhydro-3,5-di-O-benzoyl-2-deoxy-D-erythro-pentose-l-enol. Derivatives of a Furanose-related Glycal. J. Organ. Chem. (U.S.A.) 28, 435 (1963); Haga, M., and R.K. Ness: Preparation and Properties of 3,5-Di-O-p-anisoyl-l,2-dideoxy-D-erythro-pentofuranose-l-ene. Various p-Anisoylated Derivatives of D-Ribofuranose. J. Organ. Chem. (U.S.A.) 30, 158 (1965).Google Scholar
  65. 65.
    Ogawa, T., T. Kawano, and M. Matsui: A Biomimetic Synthesis of (+) biotin from D-Glucose. Carbohydr. Res. 57, C 31 (1970).Google Scholar
  66. 66.
    Ohrui, H., and S. Emoto: A Synthesis of (S)-(—)-Frontalin from D-Glucose. Agric. Biol. Chem. 40, 2267 (1967).CrossRefGoogle Scholar
  67. 67.
    Ohrui, H., and S. Emoto: Stereoselective Synthesis of (+) and (-) Avenaciolide from D-Glucose. The Correct Absolute Configuration of Natural Avenaciolide. Tetrahedron Letters 1975, 3657.Google Scholar
  68. 68.
    Ohrui, H., and S. Emoto: Stereospecific Synthesis of (+)-Biotin. Tetrahedron Letters 1975, 2765.Google Scholar
  69. 69.
    Ohrui, H., H. Kuzuhara, and S. Emoto: Synthesis with Azido Sugars. Part III. Preparation of d-Oxybiotin. Agric. Biol. Chem. 34, 375 (1970).CrossRefGoogle Scholar
  70. 70.
    Paulsen, H., and H. Behre: Umwandlung von 1,2:5,6-Di-O-isopropyliden-3- desoxy-a-D-glucose-3-en in 1,2:5,6-Di-O-isopropyliden-α-D-galactofuranose durch selektive Hydroborierung. Carbohydr. Res. 2, 80 (1966).CrossRefGoogle Scholar
  71. 71.
    Paulsen, H., W.-P. Trautweir, F.G. Espinosa, and K. Heyns: Einfache Synthese von D-Idose aus D-Glucose durch mehrfache Acetoxonium-Ion-Umlagerungen. Darstellung eines stabilen Acetoxonium-Salzes der Tetracetyl-Idose. Chem. Ber. 100, 2822 (1967).CrossRefGoogle Scholar
  72. 72.
    Pearce, G.T., W.E. Gore, R.M. Silverstein, J.W. Peacock, R.A. Cuthberg, G.N. Lanier, and J.B. Simeone: Chemical Attractants for the Smaller European Elm Bark Beetle Scolytus multistriatus (Coleoptera: Scolytidae). J. Chem. Ecol. 1, 115 (1975).CrossRefGoogle Scholar
  73. 73.
    Peat, S.: The Chemistry of Anhydro Sugars. Advances in Carbohydrate Chemistry 2, 38 (1946). New York: Academic Press.Google Scholar
  74. 74.
    Perlin, A.S.: Carbon-13 N.M.R. Spectroscopy of Carbohydrates. International Review of Science (Aspinall, G.O., ed.). Series 2, 7, 1 (1976).Google Scholar
  75. 75.
    Plaumann, D.E.: A Stereoselective synthesis of (1S:2R:4S;5R)-2,4-Dimethyl-5- Ethyl-6,8-Dioxabicyclo (3.2.1) Octane, α-Multistriatin. M. Sc. Thesis, University of Waterloo, 1977.Google Scholar
  76. 76.
    Radatus, B., and B. Fraser-Reid: Cyclopropylcarbinyl-oxo-carbonium Ions, Part V. Synthesis and Chemistry of Some Cyclopropyl Glucopyranosides. Can. J. Chem. 50, 2909 (1972).CrossRefGoogle Scholar
  77. 77.
    Radom, L., W.J. Hehre, and J.A. Pople: Molecular Orbital Theory of the Electronic Structure of Organic Compounds. XIII. Fournier Component Analysis of Internal Rotation Potential Functions in Saturated Molecules. J. Amer. Chem. Soc. 94, 2371 (1972).CrossRefGoogle Scholar
  78. 78.
    Reeves, R.E.: Cuprammonium-Glycoside Complexes. Advances in Carbohydrate Chemistry 6, 108 (1951). New York: Academic Press.Google Scholar
  79. 79.
    Reeves, R.E.: The Optical Rotation of Cellulose and Glycosides in Cuprammonium Hydroxide Solution. Science 99, 148 (1944); Reeves, R.E.: The Optical Activity of the Copper Complexes of Polysaccharides and Substituted Methyl Glucosides. J. Biol. Chem. 154, 49 (1944).CrossRefGoogle Scholar
  80. 80.
    Richardson, A.C.: Nucleophilic Replacement Reactions of Sulphonates. Part VI. A Summary of Steric and Polar Factors. Carbohydr. Res. 10, 395 (1969).CrossRefGoogle Scholar
  81. 81.
    Richtmyer, N.K.: D-altro-Heptulose (Sedoheptulose). Methods in Carbohydrate Chemistry I, 167. New York and London: Academic Press.Google Scholar
  82. 82.
    Rosenthal, A., and L.B. Nguyen: New Route to Branch-Chain Sugars by Application of Modified Wittig Reaction to Ketoses. Tetrahedron Letters 1967, 2393.Google Scholar
  83. 83.
    Schwarz, J.C.P.: Rules for Confirmation Nomenclature for Five- and Six-membered Rings in Monosaccharides and their Derivatives. Chem. Commun. 1973, 505.Google Scholar
  84. 84.
    Shafizadeh, F., and M.L. Wolfrom: Synthesis of L-Iduronic Acid and an Improved Production of D-Glucose-6-C. J. Amer. Chem. Soc. 77, 2568 (1955); Whistler, R.L., and R.E. Pyler: Synthesis of 6-Amino-6-deoxy-5-thio-D-Glucopyranose. Carbohydr. Res. 12, 201 (1970).CrossRefGoogle Scholar
  85. 85.
    Sitrin, RD.: Studies on the Synthesis of Tetrodotoxin. Ph. D. Thesis, Harvard University, 1972.Google Scholar
  86. 86.
    Soltzberg, S., R.M. Goepp, Jr., and W. Freudenberg: Hexitol Anhydrides, Synthesis and Structure of Arlitan, the 1–4 Monoanhydride of Sorbitol. J. Amer. Chem. Soc. 68, 919 (1946).CrossRefGoogle Scholar
  87. 87.
    Stevens, J.D., and H.G. Fletcher, Jr.: The Proton Magnetic Resonance Spectra of Pentofuranose Derivatives. J. Org. Chem. 33, 1799 (1968); Lemieux, R.U., and R. Nagarajan: The Configuration and Conformation of “Di-D-Fructose Anhydride 1”. Can. J. Chem. 42, 1270 (1964).CrossRefGoogle Scholar
  88. 88.
    Stork, G., and S. Raucher: Chiral Synthesis of Prostaglandins From Carbohydrates. Synthesis of (+)-15-(—)-Prostaglandin A2. J. Amer. Chem. Soc. 98, 1583 (1976).CrossRefGoogle Scholar
  89. 89.
    Stork, G., T. Takahashi, T. Suzuki, and I. Kawamoto: Unpublished results.Google Scholar
  90. 90.
    Taylor, E.C., and PA. Jacobi: Pteridines. XXXVII. A Total Synthesis of L-erythro-Biopterin and Some Related 6-(Polyhydroxyalkyl) pterins. J. Amer. Chem. Soc. 98, 2301 (1976).CrossRefGoogle Scholar
  91. 91.
    Theander, O.: 1,2: 5,6-Di-O-isopropylidene Derivatives of D-Glucohexodialdose and D-ribo-hexos-3-ulose. Acta Chem. Scand. 18, 2209 (1964).Google Scholar
  92. 92.
    Tipson, R.S., and A. Cohen: Action of Zinc Dust and Sodium Iodide in N,N-dimethyl-formanide on Contiguous, Secondary Sulfonyloxy Groups: A Simple Method for Introducing Nonterminal Unsaturation. Carbohydr. Res. 1, 338 (1965).CrossRefGoogle Scholar
  93. 93.
    Toms, B.A.: L-Galactose as a Component of a Polysaccharide of Animal Origin. Nature 146, 559 (1940).CrossRefGoogle Scholar
  94. 94.
    Triggle, D.J., and B. Belleau: Studies on the Chemical Basis for Cholinomimetic and Cholinolytic Activity. Part 1. The Synthesis and Configuration of Quaternary Salts in the 1,3-Dioxolane and Oxazoline Series. Can. J. Chem. 40, 1201 (1962).CrossRefGoogle Scholar
  95. 95.
    Upeslacis, J.: A Carbohydrate Approach to Tetrodotoxin. Ph.D. Thesis, Harvard University, 1975.Google Scholar
  96. 96.
    Vickery, HB.: Rules of Carbohydrate Nomenclature. J. Organ. Chem. (U.S.A.) 28, 281 (1963).CrossRefGoogle Scholar
  97. 97.
    Ward, R.B.: 1,6-Anhydro-β-D-Glucopyranose (Levoglucosan). Methods in Carbohydrate Chemistry II, 394 (1963). New York and London: Academic Press.Google Scholar
  98. 98.
    Wiggins, L.F.: Ethylene Oxide-type Anhydrosugars. Methods in Carbohydrate Chemistry 2, 188 (1963).Google Scholar
  99. 99.
    Wilbur, D.J., C. Williams, and A. Allerhand: Detection of the Furanose Anomers of D-Mannose in Aqueous Solution. Application of Carbon-13 Nuclear Magnetic Resonance Spectroscopy at 68 MHz. J. Amer. Chem. Soc. 99, 5450 (1977).CrossRefGoogle Scholar
  100. 100.
    Williams, J.M., and (in part) A.C. Richardson: Selective Acylation of Pyranosides-I Benzolation of Methyl α-D-Glycopyranosides of Mannose, Glucose and Galactose. Tetrahedron 23, 1369 (1967).CrossRefGoogle Scholar
  101. 101.
    Wolfe, S., A. Rauk, L.M. Tel, and T.G. Csizmadia: A Theoretical Study of the Edward-Lemieux Effect (The Anomeric Effect). The Stereochemical Requirements of Adjacent Electron Pairs and Polar Bonds. J. Chem. Soc. B 1971, 136.Google Scholar
  102. 102.
    Wolfrom, M.L., R.U. Lemieux, and S.M. Olin: Configurational Correlation of L-(levo)-Glyceraldehyde With Natural (dextro)-Alanine by a direct Chemical Method. J. Amer. Chem. Soc. 71, 2780 (1949).Google Scholar
  103. 103.
    Woodward, R.B.: The Structure of Tetrodotoxin. Pure and Applied Chem. 9, 49 (1964).CrossRefGoogle Scholar
  104. 104.
    Yates, P., and P. Eaton: Acceleration of the Diels-Alder Reaction by Aluminium Chloride. J. Amer. Chem. Soc. 82, 4436 (1960).CrossRefGoogle Scholar
  105. 105.
    Yoshimura, J., K. Kobayashi, K. Sato, and M. Funabashi: On the Configuration of Branched-Chain Derivatives of 1.2:5.6-Di-O-isopropylidene-α-D-ribo-hexofuranose- 3-ulose. Bull. Soc. Chem. Japan. 45, 1806 (1972).CrossRefGoogle Scholar
  106. 106.
    Yunker, M.B., D.E. Plaumann, and B. Fraser-Reid: The Stereochemistry of Conjugate Addition of Lithium Dialkyl Cuprate Reagents to Some Carbohydrate α-Enones. Can. J. Chem. 55, 4002 (1977).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1980

Authors and Affiliations

  • B. Fraser-Reid
    • 1
  • R. C. Anderson
    • 1
  1. 1.Guelph-Waterloo Centre for Graduate Work in ChemistryUniversity of WaterlooCanada

Personalised recommendations