Advertisement

Dehydroamino Acids, α-Hydroxy-α-amino Acids and α-Mercapto-α-amino Acids

  • Ulrich Schmidt
  • Johannes Häusler
  • Elisabeth Öhler
  • Hans Poisel
Part of the Fortschritte der Chemie organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products book series (FORTCHEMIE (closed), volume 37)

Abstract

The problem of the mechanism of the transformation of amino acids into α-keto acids claimed the attention of M. Bergmann as long ago as the early 1930s, long before the discovery of transaminations by pyridoxal-containing enzymes. Bergmann postulated dehydroamino acids as intermediates, formed by dehydrogenation of the corresponding amino acid in the peptide chain (49). These considerations led him to develop practicable syntheses of dehydroamino acid derivatives (39, 40, 46, 50), and to the study of enzymic cleavage of dehydropeptides (48, 49). The degradation of several dehydropeptides by crude pancreas preparations was discovered, and a “dehydropeptidase” isolated from kidneys, which cleaves dehydropeptides with a free carboxy group at the dehydroamino acid. Notwithstanding the publication in 1948 of a review article on these “dehydropeptidases” (149), their existence is today a controversial question. It is possible that the enzymes in question are simply normal carboxypeptidases.

Keywords

Acid Derivative Acid Ester Elimination Reaction Amino Acid Ester Lactam Antibiotic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aberhart, D. J., and L. J. Lin: Studies on the Biosynthesis of Β-Lactam Antibiotics. Part I. Stereospecific Syntheses of (2RS,3S)-[4,4,4-2H3]-, (2RS,3S)-[4-3H]-, and (2RS,3S)-[4-13C]-Valine. Incorporation of (2RS,3S)-[4-13C]-Valine into Penicillin V. J. Chem. Soc., Perkin I 1974, 2320.Google Scholar
  2. 2.
    Aberhart, D. J.: Biosynthesis of β-Lactam Antibiotics. Tetrahedron 33, 1545 (1977).Google Scholar
  3. 3.
    Achiwa, K.: Asymmetric Hydrogénation with New Chiral Functionalized Bis- phosphine-Rhodium Complexes. J. Amer. Chem. Soc. 98, 8265 (1976).Google Scholar
  4. 4.
    Achiwa, K.:New Chiral Phosphine-Rhodium Catalysts for Asymmetric Synthesis of (R)- and ( S)-N-Benzyloxycarbonylalanine. Chemistry Letters 1977, 111.Google Scholar
  5. 5.
    Albers-Schonberg, G., B. H. Arison, and J. L. Smith: New β-Lactam Antibiotics; Structure Determination of Cephamycins A and B. Tetrahedron Letters 1972, 2911.Google Scholar
  6. 6.
    Ames, D. E., R. E. Bowman, J. F. Cavalla, and D. D. Evans: Griseoviridin. Part I. J. Chem. Soc. 1955, 4260.Google Scholar
  7. 7.
    Ames, D. E., and R. E. Bowman: Griseoviridin. Part II. J. Chem. Soc. 1955, 4264.Google Scholar
  8. 8.
    Griseoviridin. Part III. Degradation to 10-Amino-decanoic Acid, and Other Reactions. J. Chem. Soc. 1956, 2925.Google Scholar
  9. 9.
    Anatol, J., and A. Medete: A New General Procedure for the Preparation of α-Oxocarboxylic Acids. Synthesis 1971, 538.Google Scholar
  10. 10.
    Anderson, L., and J. J. Kelley: The Dephosphorylation of Casein by Alkalies. J. Amer. Chem. Soc. 81, 2275 (1959).Google Scholar
  11. 11.
    Anderson, B., D. C. Hodgkin, and M. A. Viswamitra: The Structure of Thiostrepton. Nature 225, 233 (1970).Google Scholar
  12. 12.
    Appel, R., und A. Hauss: Über einige Reaktionen des Triphenylphosphinimins und des Triphenylphosphinbromimins. Z. Anorg. Chem. 311, 290 (1961).Google Scholar
  13. 13.
    Applegate, H. E., J. E. Dolfini, M. S. Puar, W. A. Slusarchyk, and B. Toeplitz: Synthesis of 7a-Methoxycephalosporins. J. Org. Chem. 39, 2794 (1974).Google Scholar
  14. 14.
    Arnstein, H. R. V., and J. C. Crawhall: The Biosynthesis of Penicillin. 6. A Study of the Mechanism of the Formation of the Thiazolidine-ß-Lactam Rings, Using Tritium-labelled Cystine. Biochem. J. 67, 180 (1957).Google Scholar
  15. 15.
    Arnstein, H. R. V., and M. E. Clubb: The Biosynthesis of Penicillin. 8. Investigation of Cyclic CysteinylValine Peptides as Precursors. Biochem. J. 68, 528 (1958).Google Scholar
  16. 16.
    Asquith, R. S., and P. Carthew: Synthesis and PMR Properties of Some Dehydroalanine Derivatives. Tetrahedron 28, 4769 (1972).Google Scholar
  17. 17.
    Asquith, R. S., K. W. Yeung, and M. S. Otterburn: Synthesis, Identification and Properties of Some ß-Aminoalanine Derivatives. Tetrahedron 33, 1633 (1977).Google Scholar
  18. 18.
    Atkins, P. R., and I. T. Kay: Synthesis of (±)Versimide. J. Chem. Soc., Chem. Comm. 1971, 430.Google Scholar
  19. 19.
    Augustin, M.: Die Umsetzung des 2,5-Diketopiperazins mit Aldehyden und Nitrosoverbindungen. J. prakt. Chem. 32, 158 (1966).Google Scholar
  20. 20.
    Austel, V., und W. Steglich: Reaktionen von Aminosäuren mit Trifluoressigsäure- Anhydrid III. 41-Substituierte 2-Trifluormethyl-4-(3,3,3-trifluor-2-trifluoracetoxypropy- liden)-2-oxazoLin-5-one. Chem. Ber. 108, 2361 (1975).Google Scholar
  21. 21.
    Baldwin, J. E., S. B. Haber, and J. Kitchin: Dehydropeptides Related to ß-Lactam Antibiotics: A Schema for the Biosynthesis of Penicillins and Cephalosporins. J. C. S. Chem. Comm. 1973, 790.Google Scholar
  22. 22.
    Baldwin, J. E., J. Löliger, W. Rastetter, N. Neuss, L. L. Huckstep, and N. De La Higuera: Use of Chiral Isopropyl Groups in Biosynthesis. Synthesis of (2RS,3S)- [4-13C]-Valine. J. Amer. Chem. Soc. 95, 3796 (1973).Google Scholar
  23. 23.
    Baldwin, J. E., F. J. Urban, R. D. G. Cooper, and F. L. Jose: Direct 6-Methoxylation of Penicillin Derivatives. A Convenient Pathway to Substituted ß-Lactam Antibiotics. J. Amer. Chem. Soc. 95, 2401 (1973).Google Scholar
  24. 24.
    Baldwin, J. E., A. Au, M. Christie, S. B. Haber, and D. Hesson: Stereospecific Conversion of Peptides into ß-Lactams. J. Amer. Chem. Soc. 97, 5957 (1975).Google Scholar
  25. 25.
    Baltazzi, E.: The Chemistry of 5-Oxazolones. Quart. Rev. (London) 9, 150 (1955).Google Scholar
  26. 26.
    Bap AT, J. B., D. ST. C. Black, and R. F. Brown: Cyclic Hydroxamic Acids. Adv. Heterocyclic Chem. 10, 199 (1969).Google Scholar
  27. 27.
    Baute, R., G. Deffieux, M.-A. Baute, M.-J. Filleau, and A. Neveu: Un nouveau metabolite fongique du groupe des epidithio-3,6-dioxo-2,5-piperazines: l’epicorazine A, isolée d’une souche d’Epicoccum nigrum Link (adelomycetes). Tetrahedron Letters 1976, 3943.Google Scholar
  28. 28.
    Bayer, E., und W. Parr: Eliminierung von Schwefelwasserstoff aus Ferredoxin und Cysteinmethylester. Angew. Chem. 78, 824 (1966); Angew. Chem. Int. Ed. Engl. 5, 840 (1966).Google Scholar
  29. 29.
    Behrens, O. K., D. G. Doherty, and M. Bergmann: Resolution of d,l-Phenyl- alanine by Asymmetrie Enzymic Synthesis. J. Biol. Chem. 136, 61 (1940).Google Scholar
  30. 30.
    Behringer, H.: Synthese des Cystins. Chem. Ber. 81, 326 (1948).Google Scholar
  31. 31.
    Behringer, H., and E. Fackler: Eine einfache Synthese der racemischen Mer- captursäuren. Ann. 564, 73 (1949).Google Scholar
  32. 32.
    Belitz, H. D.: Eine Synthese von ß-Methyllanthionin. Tetrahedron Letters 1967, 749.Google Scholar
  33. 33.
    Ben-Ishai, D., J. Altmann, and Z. Bernstein: The Reactions of Ureas with Glyoxylic Acid and Methyl Glyoxylate. Tetrahedron 33, 1191 (1977).Google Scholar
  34. 34.
    Benn, M. H., and R. E. Mitchell: Attempts on the Synthesis of the Penicillin Ring System by Transannular Reactions. Canad. J. Chem. 50, 2195 (1972).Google Scholar
  35. 35.
    Benoiton, L., R. W. Hanson, and H. N. Rydon: Polypeptides. Part VIII. Synthesis of Oxazoline Peptides. J. Chem. Soc. 1964, 824.Google Scholar
  36. 36.
    Berg, D. H., R. P. Massing, M. M. Hoehn, L. D. Boeck, and R. L. Hamill: A 30641, a New Epidithiodiketopiperazine with Antifungal Activity. J. Antibiot. 29, 394 (1976).Google Scholar
  37. 37.
    Bergmann, M., und A. Miekeley: Derivate des d,l-Serins. Über neuartige Anhydride des Glycylserins. Z. physiol. Chem. 140, 128 (1924).Google Scholar
  38. 38.
    Bergmann, M., A. Miekeley und E. Kann: Verwandlung des Serins in Brenztrauben-säure und in Alanin. Z. physiol. Chem. 146, 247 (1925).Google Scholar
  39. 39.
    Bergmann, M., E. Kann und A. Miekeley: Dehydrierung von Asparagin und Ver-wandlung in Brenztraubensäure. Ann. 449, 135 (1926).Google Scholar
  40. 40.
    Bergmann, M., and F. Stern: Dehydrierung von Aminosäuren (Alanin, Phenylalanin, Tyrosin). Ann. 448, 20 (1926).Google Scholar
  41. 41.
    Bergmann, M., F. Stern und C. Witte: Über neue Verfahren der Synthese von Dipeptiden und Dipeptid-Anhydriden. Ann. 449, 277 (1926).Google Scholar
  42. 42.
    Bergmann, M., und H. Köster: Synthese argininhaltiger Dipeptide: Isomere Phenyl- alanyl-arginine und ihre Umwandlung in Phenylalanyl-ornithin. Z. physiol. Chem. 167, 91 (1927).Google Scholar
  43. 43.
    Bergmann, M., und A. Miekeley: Zur Kenntnis des Abbaues der Aminosäuren: Serin als Dehydrierungsmittel. Ann. 458, 40 (1927).Google Scholar
  44. 44.
    Bergmann, M., L. Zervas und V. Du Vigneaud: d-Tyrosyl-d-arginin und sein Anhydrid. Ber. 62, 1905 (1929).Google Scholar
  45. 45.
    Bergmann, M., und K. GrÄFE: Zur Kenntnis der Peptidbindung. Z. Physiol. Chem. 187, 183 (1930).Google Scholar
  46. 46.
    Bergmann, M., und K. GrÄFE: Synthese eines Peptids und anderer AbkömmLinge der a-Aminoacrylsäure aus Brenztraubensäure. Z. Physiol. Chem. 187, 187 (1930).Google Scholar
  47. 47.
    Bergmann, M., und K. GrÄFE:Verbindungen der Brenztraubensäure mit Aminosäuren. Z. Physiol. Chem. 187, 196 (1930).Google Scholar
  48. 48.
    Bergmann, M., V. Schmitt und A. Miekeley: Über Peptide dehydrierter Amino-säuren, ihr Verhalten gegen pankreatischen Fermenten und ihre Verwendung zur Peptidsynthese. Z. physiol. Chem. 187, 264 (1930).Google Scholar
  49. 49.
    Bergmann, M., und H. Schleich: Über die enzymatische Spaltung dehydrierter Peptide. Auffindung einer Dehydropeptidase. Z. physiol. Chem. 205, 65 (1931).Google Scholar
  50. 50.
    Bergmann, M., L. Zervas und F. Lebrecht: Dehydrierung von Aminosäuren, Über-gang zur Pyrrolreihe. Chem. Ber. 64, 2315 (1931).Google Scholar
  51. 51.
    Bergmann, M.: Aufgaben der Synthese für die Erforschung der Eiweißstoffe und ihrer Fermente. Naturwiss. 20, 941 (1932).Google Scholar
  52. 52.
    Bergmann, M., und H. Schleich: Weiteres über Dehydropeptidasen: Über die enzymatische Angreifbarkeit von Verbindungen aus Brenztraubensäure und Amino-säure. Z. physiol. Chem. 207, 235 (1932).Google Scholar
  53. 53.
    Bergmann, M., O. K. Behrens, and D. G. Doherty: Asymmetrie Course of the Enzymic Synthesis of Peptide Bonds. J. Biol. Chem. 124, 7 (1938).Google Scholar
  54. 54.
    Bergmann, M., and J. E. Tietzmann: Transformation of an Acyl Diketopiperazine. J. Biol. Chem. 155, 535 (1944). 302Google Scholar
  55. 55.
    Birkinshaw, J. H., M. G. Kalyanpur, and C. E. Stickings: Studies in the Biochemistry of Micro-organisms. 113. Pencolide, a Nitrogen-containing Metabolite of Penicillium Multicolor Grigorieva-Manilova and Poradielova. Biochem. J. 86, 237 (1963).Google Scholar
  56. 56.
    Birnbaum, G. I., and S. R. Hall: Structure of the Antibiotic Griseoviridin. J. Amer. Chem. Soc. 98, 1926 (1976).Google Scholar
  57. 57.
    Blake, K. W., and P. G. Sammes: Geometrical Isomerism and Tautomerism of 3-Arylidene-6-methyl-piperazine-2,5-diones. J. Chem. Soc. (C) 1970, 980.Google Scholar
  58. 58.
    Blondeau, P., R. Gauthier, C. Berse, and D. Gravel: Synthesis of Some Stable 7-Halo-l,4-thiazepines. Potential Substituted Penam Precursors. Can. J. Chem. 49, 3866 (1971).Google Scholar
  59. 59.
    Bodanszky, M., J. Izdebski, and I. Muramatsu: The Structure of the Peptide Antibiotic Stendomycin. J. Amer. Chem. Soc. 91, 2351 (1969).Google Scholar
  60. 60.
    Bodansky, M., G. G. Marconi, and A. Bodansky: The Structure of Stendomyci- cidine. J. Antibiot. 22, 40 (1969).Google Scholar
  61. 61.
    Bodansky, M., J. A. Scozzie, and I. Muramatsu: Dehydroalanine Residues in Thio- strepton. J. Antibiot. 23, 9 (1970).Google Scholar
  62. 62.
    Bodansky, M., and A. Bodansky: Addition of Thioglycolic Acid to Stendomycin. J. Antibiot. 27, 312 (1974).Google Scholar
  63. 63.
    Boggs, N. T., R. E. Gawley, K. A. Koehler, and R. G. Hiskey: Synthesis of DL-y-CarboxygluTamic Acid Derivatives. J. Org. Chem. 40, 2850 (1975).Google Scholar
  64. 64.
    Bohak, Z.: N8-(DL-2-Amino-2-carboxyethyl)-L-lysine, a New Amino Acid Formed on Alkaline Treatment of Proteins. J. Biol. Chem. 239, 2878 (1964).Google Scholar
  65. 65.
    Bose, A. K., and M. S. Manhas: Cephalosporins, Penicillins and Other β-Lactams. J. Heterocyclic Chem. 13, 43 (1976).Google Scholar
  66. 66.
    Bowie, J. H., D. A. Cox, A. W. Johnson, and G. Thomas: Viomycin. Tetrahedron Letters 1964, 3305.Google Scholar
  67. 67.
    Bowie, J. H., A. W. Johnson, and G. Thomas: The Chromophore of Viomycin. Tetrahedron Letters 1964, 863.Google Scholar
  68. 67A.
    Brazhnikowa, M. G., M. K. Kudinova, N. P. Potapova, T. M. Filippova, E. Borowski, J. Zielinski, and J. Golic: Structure of the Antibiotic Madumicin. Bioorg. Khim. 1975, 1383. Chem. Abstr. 84, 140654a (1976).Google Scholar
  69. 68.
    Breitholle, E. G., and C. H. Stammer: The Synthesis and Reactions of Dehydro Phenylalanine Anilide. Tetrahedron Letters 1975, 2381.Google Scholar
  70. 69.
    Breitholle, E. G., and C. H. Stammer: Synthesis of Some Dehydrophenylalanine Peptides. J. Org. Chem. 41, 1344 (1976).Google Scholar
  71. 70.
    Bremner, D. H., M. M. Campbell, and G. Johnson: Conversion of 6a-Alkoxy- formamidopenicillanates into 6a-Aminopenicillanates, and the Formation of 6-Spiro- penicillanates. J. Chem. Soc., Chem. Commun. 1976, 293.Google Scholar
  72. 71.
    Bremner, D. H., M. M. Campbell, and G. Johnson:Transformations of Penicillins: New Methods of Formation and Reactions of 6,6-Disubstituted Penams and 7,7-Disubstituted Cephems. J. Chem. Soc., Perkin I 1976, 1918.Google Scholar
  73. 72.
    Bremner, D. H., M. M. Campbell, and G. Johnson:Transformation of Penicillins: Reactions of Penam S-Oxides with N- Chloro-N-sodio-carbamates. J. Chem. Soc., Perkin I 1977, 1943.Google Scholar
  74. 73.
    Brink, A. J., and A. Jordaan: Synthesis of Branched-Chain Sugars by Reaction of Glycosuloses with a-Metalated Isocyanoacetic Esters. Carbohydrate Research 34, 1 (1974).Google Scholar
  75. 74.
    Brosio, E., F. Conti, R. Del Giudice, A. Di Nola, and D. Gattegno: The Conformation of Viomycin in Solution. Gazz. Chim. Ital. 107, 139, 1977.Google Scholar
  76. 75.
    Brown, A. G., and T. G. Smale: Assignment of the Stereochemistry of A-Benz- amido- and oc-Phthalimido-crotonates using Nuclear Magnetic Resonance Spectroscopy. J. Chem. Soc., Chem. Comm. 1969, 1489.Google Scholar
  77. 76.
    Brown, A. G.: Versimide, a Metabolite of Aspergillus Versicolor. J. Chem. Soc. (C) 1970, 2572.Google Scholar
  78. 77.
    Brown, A. G., and T. C. Smale: Synthesis of (+)-Versimide (Methyl-oc-(methyl- succimido) acrylate) and Related Compounds. J. Chem. Soc. Perkin I 1972, 65.Google Scholar
  79. 78.
    Bycroft, B. W., D. Cameron, L. R. Croft, A. W. Johnson, and T. Webb: Vio- mycin. Further Degradative Studies. Tetrahedron Letters 1968, 2925.Google Scholar
  80. 79.
    Bycroft, B. W., D. Cameron, L. R. Croft, A. Hassanali-Walji, A. W. Johnson, and T. Webb: The Chromophore and Partial Structure of Viomycin. Tetrahedron Letters 1968, 5901.Google Scholar
  81. 80.
    Bycroft, B. W.: Structural Relationships in Microbial Peptides. Nature 224, 595 (1969).Google Scholar
  82. 81.
    Bycroft, B. W., D. Cameron, A. Hassanali-Walji, and A. W. Johnson: Synthesis of a Model Relating to the Chromophores of Capreomycin and Viomycin. Tetrahedron Letters 1969, 2539.Google Scholar
  83. 82.
    Bycroft, B. W., D. Cameron, I. R. Croft, A. Hassanali-Walji, A. W. Johnson, and T. Webb: The Total Structure of Viomycin, a Tuberculostatic Peptide Antibiotic. Experientia 1971, 27, 501.Google Scholar
  84. 83.
    Bycroft, B. W.: The Crystal Structure of Viomycin, a Tuberculostatic Antibiotic. J. Chem. Soc., Chem. Comm. 1972, 660.Google Scholar
  85. 84.
    Bycroft, B. W., L. R. Croft, A. W. Johnson, and T. Webb: Viomycin Part I. The Structure of the Guanidine-Containing Unit. J. Chem. Soc. Perkin I 1972, 820.Google Scholar
  86. 85.
    Bycroft, B. W., D. Cameron, L. R. Croft, A. Hassanali-Walji, A. W. Johnson, and T. Webb: Viomycin Part II. The Structure of the Chromophore. J. Chem. Soc. Perkin I 1972, 827.Google Scholar
  87. 86.
    Bycroft, B. W., and G. R. Lee: Efficient Assymmetric Synthesis of a-Amino Acids from a-Keto Acids and Ammonia with Conservation of the Chiral Reagent. J. C. S. Chem. Comm. 1975, 988.Google Scholar
  88. 87.
    Bycroft, B. W., and G. R. Lee:Efficient Asymmetric Synthesis of a-Amino Acids from a-Keto Acids and Ammonia with Conservation of the Chiral Reagent. J. Chem. Soc. Chem. Comm. 1975, 988; Addendum: J. Chem Soc. Chem Comm. 1976, 616.Google Scholar
  89. 88.
    Bycroft, B. W., and I. J. King: Revised Constitution, Absolute Configuration and Conformation of Griseoviridin, a Modified Cyclic Peptide Antibiotic. J. Chem. Soc. Perkin I, 1976, 1996.Google Scholar
  90. 88A.
    Bycroft, B. W., and R. Pinchin: Structure of Althiomycin, A Highly Modified Peptide Antibiotic. J. Chem. Soc. Chem. Comm. 1975, 121.Google Scholar
  91. 89.
    Cama, L. D., W. J. Leanza, T. R. Beattie, and B. G. Christensen: Substituted Penicillin and Cephalosporin Derivatives. I. Stereospecific Introduction of the C-6(7) Methoxy Group. J. Amer. Chem. Soc. 94, 1408 (1972).Google Scholar
  92. 90.
    Cama, L. D., and B. G. Christensen: Substituted Penicillins and Cephalosporins. VII. A Stereospecific Introduction of the C-6(7) Methoxy Group. Tetrahedron Letters 1973, 3505.Google Scholar
  93. 91.
    Cardillo, R., C. Fuganti, D. Ghiringhelli, and P. Grasselli: Stereochemical Course of the a 3-Desaturation of L-Tryptophan in the Biosynthesis of Crypto- echinuLine A in Aspergillus Amstelodami. J. Chem. Soc. Chem. Comm. 1975, 778.Google Scholar
  94. 92.
    Carter, H. E., P. Handler, and D. B. Melville: Azlactones I. Preparation of Benzoyl-a-aminocrotonic Acid Azlactone and the Conversion of Allo-Threonine to Threonine. J. Biol. Chem. 129, 359 (1939).Google Scholar
  95. 93.
    Carter, H. E., and C. M. Stevens: Azlactone Formation in Glacial and in Aqueous Acetic Acid and Preparation of Benzoyl-a-amino-crotonic Acid Azlactone II. J. Biol. Chem. 133, 117 (1940).Google Scholar
  96. 94.
    Carter, H. E., and W. C. Risser: Preparation of Benzoyl-a-aminocinnamic acid Azlactones I and II. The Use of P-Phenylethylamine in the Purification of a- Amino-(3-methoxy(hydroxy)acids. J. Biol. Chem. 139, 255 (1941).Google Scholar
  97. 95.
    Carter, H. E.: Azlactones: In Org. Reactions 3, 198ff., New York: J. Wiley 8c Sons, Inc., 1946. 304Google Scholar
  98. 96.
    Carter, J. H., R. H. Dubus, J. R. Dyer, J. C. Floyd, K. C. Rice, and P. D. Shaw: Biosynthesis of Viomycin I. Origin of a,P-Diamino-propionic Acid and Serine. Bio-chemistry 13, 1221 (1974).Google Scholar
  99. 97.
    Biosynthesis of Viomycin II. Origin of P-Lysine and Viomycidine. Biochemistry 13, 1227 (1974).Google Scholar
  100. 98.
    Chatterjee, R., A. H. Cook, I. Heilbron, and A. L. Levy: Studies in the Azole Series. Part VII. A New Route to a-Amino-(3-mercapto Acids. J. Chem. Soc. 1948, 1337.Google Scholar
  101. 99.
    Chemiakin, M. M., and V. K. Antonov: A New Method of Synthesis of a- Substituted oc-Acylamino Acids. Doklady Akad. Nauk. S.S.S.R. 129, 349 (1959). Chem. Abstr. 54, 7633 d.Google Scholar
  102. 100.
    Chemiakin, M. M., E. S. Tchaman, L. I. Denisova, G. A. Ravdel, and W. J. Rodionow: Synthèses et propriétés des A-aminoacides A-substitués. Bull. Soc. Chim. France 1959, 530.Google Scholar
  103. 101.
    Cheung, Y., and C. Walsh: Stereospecific Synthesis of Isotopically Labeled Serine at Carbon 3 and Stereochemical Analysis of D-Serine Dehydrase Reaction. J. Amer. Chem. Soc. 98, 3397 (1976).Google Scholar
  104. 102.
    Chigira, Y., M. Masaki, and M. Ohta: Syntheses and Reactions of N(Phenyl- pyruvoyl) Amino Acids. Bull. Chem. Soc. Jap. 42, 224 (1969).Google Scholar
  105. 103.
    Chou, T. S.: Sulfenic Acid Trimethylsilylesters. A Convenient Protection for a Reactive Functionality. Tetrahedron Letters 1974, 725.Google Scholar
  106. 104.
    Coffen, D. L., D. A. Katonak, N. R. Nelson, and F. D. Sancilio: A Short Synthesis of Aromatic Analogues of the Aranotines. J. Org. Chem. 42, 948 (1977).Google Scholar
  107. 105.
    Cooper, R. D. G.: Structural Studies on Penicillin Derivatives. VIII. A Possible Model Biosynthetic Route to Penams and Cephems. J. Amer. Chem. Soc. 94, 1018 (1972).Google Scholar
  108. 106.
    Cornforth, J. W.: Oxazoles and Oxazolones. In: H. T. Clarke, J. R. Johnson, and Sir R. Robinson, The Chemistry of Penicillin, p. 730ff. Princeton: Princeton University Press. 1949.Google Scholar
  109. 107.
    Cornforth, J. W.: Oxazole and its Derivatives. In: R. C. Elderfield, Heterocyclic Compounds, Vol. 5, p. 336ff., New York: J. Wiley & Sons Inc., 1957.Google Scholar
  110. 108.
    Dang, T. P., and H. B. Kagan: The Asymmetric Synthesis of Hydratropic Acid and Amino Acids by Homogeneous Catalytic Hydrogénation. J. Chem. Soc. Chem. Comm. 1971, 481.Google Scholar
  111. 109.
    Dang, T. P., J. C. Poulinet H. B. Kagan: Reduction asymétrique catalysée par des complexes de métaux de transition. III. Diphosphines chirales derivées de l’Isopropylidene dihydroxy-2,3-bis(diphenylphosphino)-l,4-butane (DIOP). J. Organo met. Chem. 91, 105 (1975).Google Scholar
  112. 110.
    Davies, J. S., and M. N. Ibrahim: Asymmetric Hydrogénation of Model Dehydro- valyl Peptides. Tetrahedron Letters 1977, 1453.Google Scholar
  113. 111.
    Davis, L., and D. E. Metzler: Pyridoxal-Linked Elimination and Replacement Reactions. In: The Enzymes, Vol. VII, Paul D. Boyer, Third Ed. New York and London: Academic Press. 1972.Google Scholar
  114. 112.
    Delpierre, G. R., F. W. Eastwood, G. E. Gream, D. G. I. Kingston, P. S. Sarin, Lord Todd, and D. H. Williams: Antibiotics of the Ostreogrycin Complex. Part II. Structure of Ostreogrycin A. J. Chem. Soc. (C) 1966, 1653.Google Scholar
  115. 113.
    Depaire, H., J.-P. Thomas, and A. Brun: The Structure Relationship between the Antibiotics Nosiheptide and Thiostrepton. Tetrahedron Letters 1977, 1403.Google Scholar
  116. 114.
    Doherty, D. G., J. E. Tietzman, and M. Bergmann: Peptides of Dehydrogenated Amino Acids. J. Biol. Chem. 147, 617 (1943).Google Scholar
  117. 114A.
    Durant, F., G. Evrard, J. P. Declercq, and G. Germain: Virginiamycin. Factor, M-Dioxane (of Virginiamycin). Cryst. Struct. Commun. 1974, 503. Chem. Abstr. 81, 128072g (1974).Google Scholar
  118. 115.
    Dyer, J. R., G. K. Kellogg, R. F. A, and WM. E. Streetman: Viomycin II. The Structure of Viomycin. Tetrahedron Letters 1965, 585.Google Scholar
  119. 116.
    Eiger, J. Z., and J. P. Greenstein: Addition Products of Dehydropeptides. Arch. Biochem. 19, 467 (1948).Google Scholar
  120. 117.
    Erlenmeyer, E., und E. Frühstück: Über Phenyl-A-amidomilchsäure (Phenylserin). Ann. 284, 36 (1895).Google Scholar
  121. 118.
    Faleev, N. G., YU. N. Belokon, V. M. Belikov, and I. M. Mel’nikova: Oxidative Deamination of the Alanine Ligand by Air Oxygen in Stereochemically Inert Bis-(N-salicylidene alaninato)cobaltate(III) Complexes. J. C. S. Chem. Commun. 1975, 85.Google Scholar
  122. 119.
    Fallona, M. C., T. C. Morris, P. De Mayo, T. Money, and A. Stoessel: Griseo-viridin. J. Amer. Chem. Soc. 84, 4162 (1962).Google Scholar
  123. 120.
    Fallona, M. C., P. De Mayo, T. C. Mcmorris. T. Money, and A. Stoessel: Mold Metabolites. II. The Structure of Griseoviridin. Canad. J. Chem. 42, 371 (1964).Google Scholar
  124. 121.
    Farlow, M. W.: Cysteine and Cystine. U.S. 2,406,362 (1946); Chem. Abstr. 40, 7233 (1946).Google Scholar
  125. 122.
    Farlow, M. W.: A New Synthesis of Cystine. J. Biol. Chem. 176, 71 (1948).Google Scholar
  126. 123.
    Fawcett, P. A., J. J. Usher, and E. P. Abraham: Proceedings of the Second International Symposium on the Genetics of Industrial Microorganisms (K. O. Mcdonald, ed.), p. 129if. New York: Academic Press. 1975.Google Scholar
  127. 124.
    Fayos, J., D. Lokensgard, J. Clardy, R. J. Cole, and J. W. Kirksey: Structure of Verruculogen, a Tremor Producing Peroxide from Pénicillium verruculosum. J. Amer. Chem. Soc. 96, 6785 (1974).Google Scholar
  128. 125.
    Fiaud, J. C., et H. B. Kagan: Une Nouvelle Synthèse d’à Amino Acides. Synthèse Asymétrique de 1’Alanine. Tetrahedron Letters 1970, 1813.Google Scholar
  129. 126.
    Filler, R.: Recent Advances in Oxazolone Chemistry. In: Advances in Heterocyclic Chemistry 4, p. 75 if. ( A. R. Katritzky. A. J. Boulton, and J. M. Lagowski, eds.). New York and London: Academic Press. 1965.Google Scholar
  130. 127.
    Filler, R., and Y. S. Rao: New Developments in the Chemistry of Oxazolones. IN: Advances in Heterocyclic Chemistry 21, 175 (A. R. Katritzky and A. J. Boulton). New York, San Francisco, London: Academic Press. 1977.Google Scholar
  131. 128.
    Firestone, R. A., and B. G. Christensen: Functionalization of Penicillins at Carbon 6 via N-Acylimines. 6-Hydroxy Penicillin. Substituted Penicillins and Cephalosporins. VIII. J. Org. Chem. 38, 1436 (1973).Google Scholar
  132. 129.
    Fischer, G., G. Oehme und A. Schellenberger: Zur Theorie der a-Ketosäuren: Beziehungen zwischen Struktur und UV-Spektren von a-Ketosäuren und verwandten a-Dicarbonylverbindungen. Tetrahedron 27, 5683 (1971).Google Scholar
  133. 130.
    Fisher, C., and H. S. Mosher: Asymmetrie Homogenous Hydrogénation with Phosphine-Rhodium-Complexes Chiral Both at Phosphorus and Carbon. Tetrahedron Letters 1977, 2487.Google Scholar
  134. 131.
    Forster, M. O., and W. B. Saville: Isolation of Picrorocellin from Rocella fuciformis. J. Chem. Soc. 121, 816 (1922).Google Scholar
  135. 132.
    Fry, E. M.: Oxazolines, J. Org. Chem. 14, 887 (1949).Google Scholar
  136. 133.
    Fryzuk, M. D., and B. Bosnich: Asymmetric Synthesis. Production of Optically Active Amino Acids by Catalytic Hydrogénation. J. Amer. Chem. Soc. 99, 6262 (1977).Google Scholar
  137. 134.
    Fu, S.-C. J., and J. P. Greenstein: Saturation of Acetyldehydroalanine with Benzyl- amine. J. Amer. Chem. Soc. 77, 4412 (1955).Google Scholar
  138. 135.
    Fukuyama, T., S. Nakatsuka, and Y. Kishi: A New Synthesis of Epidithiapipera- zinediones. Tetrahedron Letters 1976, 3393.Google Scholar
  139. 136.
    Gallina, C., F. Petrini, and A. Romeo: Synthesis of Derivatives of 2-Amino- proline and 5-Aminoproline. J. Org. Chem. 35, 2425 (1970).Google Scholar
  140. 137.
    Gallina, C., C. Marta, C. Colombo, and A. Romeo: Capreomycidine and 3- Guanidinoproline from Viomycidine. Tetrahedron 27, 4681 (1971).Google Scholar
  141. 138.
    Gallina, C., and A. Liberatori: A New Synthesis of l-Acetyl-3-arylidene (alkylidene) piperazine-2,5-diones. Tetrahedron Letters 1973, 1135.Google Scholar
  142. 139.
    Gallina, C, M. Maneschi, and A. Romeo: Synthesis of 2-Alko\y-2-acylamino- propionic Acids by Alkoxymercuration-Demercuration of 2-Acylaminoacrylic Acids. J. Chem. Soc. Perkin I 1973, 1134.Google Scholar
  143. 140.
    Gallina, C., and A. Liberatori: Condensation of l,4-Diacetylpiperazine-2,5-dione with Aldehydes. Tetrahedron 30, 667 (1974).Google Scholar
  144. 141.
    Gawron, O., and G. Odstrchel: Kinetic Studies on the Alkaline Decomposition of Cystine Derivatives and Peptides. J. Amer. Chem. Soc. 89, 3263 (1967).Google Scholar
  145. 142.
    Gelbard, G., H. B. Kaganet R. Stern: Catalyse asymétrique avec des Complexes chiraux de Rhodium-DIOP -V. Effets des substituants lors de la Reduction d’acides N-Acylamino cinnamiques. Tetrahedron 32, 233 (1976).Google Scholar
  146. 143.
    Ginsburg, S., and I. B. Wilson: Factors Affecting the Competitive Formation of Oxazolines and Dehydroalanines from Serine Derivatives. J. Amer. Chem. Soc. 86, 4716 (1964).Google Scholar
  147. 144.
    Givot, J. L., T. A. Smith, and R. H. Abeles: Studies on the Mechanism of Action and the Structure of the Electrophilic Center of Histidine Ammonia Lyase. J. Biol. Chem. 244, 6341 (1969).Google Scholar
  148. 145.
    Glaser, R., and J. Blumenfeld: Inhibition of the Asymmetric Hydrogénation of Z-Methyl-α-aceTamidocinnamate Catalyzed by DIOP-Rhodium Catalyst in the Presence of Z-Adamantyl- or Bornyl-α-aceTamidocinnamate. Tetrahedron Letters 1977, 2525.Google Scholar
  149. 146.
    Glaser, R., and S. Geresh: Structural Requirements in Chiral Diphosphine-Rhodium- Complexes. VII. Use of Z-Methyl-a-acylaminocinnamates as Structural Probes for DIOP-Rhodium(I) Complexes. Tetrahedron Letters 1977, 2527.Google Scholar
  150. 146A.
    Gordon, E. M., H. W. Chang, and C. M. Cimarusti: Sulfenyl Transfer Rearrangement of Thiooximes: A Novel Conversion of Cephalosporins to 7-3-Methoxy-cephalosporins. J. Amer. Chem. Soc. 99, 5504 (1977).Google Scholar
  151. 147.
    Gravel, D., R. Gauthier, and C. Berse: A General Synthesis of a-Acylaminoacrylic Esters. J. C. S. Chem. Comm. 1972, 1322.Google Scholar
  152. 148.
    Grigg, R., and J. Kemp: New Selected Dehydroamino-acid Esters and Triazolidines. J. Chem. Soc. Chem. Comm. 1977, 125.Google Scholar
  153. 149.
    Greenstein, J. P.: Dehydropeptidases. In: Advances in Enzymology VIII. New York: Interscience Publishers. Inc. 1948.Google Scholar
  154. 150.
    Greenstein, J. P., and M. Winitz: Chemistry of the Amino Acids, Vol. 2, p. 843. New York-London-Sydney: J. Wiley and Sons. Inc. 1961.Google Scholar
  155. 151.
    Grooss, E., and J. L. Morell: The Presence of Dehydroalanine in the Antibiotic Nisin and Its Relationship to Activity. J. Amer. Chem. Soc. 89, 2791 (1967).Google Scholar
  156. 152.
    Grooss, E., J. L. Morell, and L. C. Craig: Dehydroalanyllysine: Identical COOH- terminal Structures in the Peptide Antibiotics Nisin and Subtilin. Proc. of the National Academy of Sciences 62, 952 (1969).Google Scholar
  157. 153.
    Grooss, E., and J. L. Morell: Nisin. The Assignment of Sulfide Bridges of (3-Methyl- lanthionine to a Novel Bicyclic Structure of Identical Ring Size. J. Amer. Chem. Soc. 92, 2919 (1970).Google Scholar
  158. 154.
    The Structure of Nisin. J. Amer. Chem. Soc. 93, 4634 (1971).Google Scholar
  159. 155.
    Grooss, E., H. H. Kiltz und L. C. Craig: Subtilin II. -Die Aminosàurezusammen- setzung des Subtilins. Z. Physiol. Chem. 354, 799 (1973).Google Scholar
  160. 156.
    Grooss, E., H. H. Kiltz und E. Nebelin: Subtilin VI. Struktur des Subtilins. Z. Physiol. Chem. 354, 810 (1973).Google Scholar
  161. 157.
    Grooss, E., and H. H. Kiltz: The Number and Nature of a,ß-Unsaturated Amino Acids in Subtilin. Biochem. Biophys. Res. Comm. 50, 559, 1973.Google Scholar
  162. 158.
    Grooss, E., K. Nöda und B. Nisula: Festphasensynthese von Peptiden mit carboxy- terminalen Amidgruppen. -Thyrotropin-freisetzendes Hormon (TRF). Angew. Chem. 85, 672 (1973); Angew. Chem. Internat. Ed. Engl. 12, 664 (1973).Google Scholar
  163. 159.
    Grooss, E., K. NÖDA, and S. Matsuura: The Utility of a,ß-Unsaturated Amino Acids in Peptide Synthesis. II. The Synthesis of Peptides via a,ß-Unsaturated Amino Acids. Peptides 1974, Proc. of the 13th Europ. Peptide Symposium, p. 403. New York: J. Wiley & Sons. 1975.Google Scholar
  164. 160.
    Grooss, E.: Subtilin and Nisin: The Chemistry and Biology of Peptides with a,ß- Unsaturated Amino Acids. In: Peptides: Chemistry, Structure and Biology Proceed-ings of the 4th American Peptide Symp. 1975, p. 31. Ed. by R. Walter and J. Meienhofer.Google Scholar
  165. 161.
    Grooss, E., and S. Matsuura: a,ß-Unsaturated and Thioether Amino Acids in Peptide Synthesis. In: Peptides, Chemistry, Structure and Biology Proceedings of the 4th American Peptide Symp. 1975, p. 351.Google Scholar
  166. 162.
    Grooss, H., J. Gloede, J. Keitel und D. Kunath: a-Aminosäuren und Derivate. II. Isonitrilreaktionen mit Glyoxylsäurederivaten. J. Prakt. Chem. 4. Reihe 37, 192 (1968).Google Scholar
  167. 163.
    Hamill, R. L., and W. M. Stark: Antibiotic A-2315 from Actinoplanes philippinen- sis. U.S. Appl. 276, 546 (1972); Chem. Abstr. 81, 2390 (1974).Google Scholar
  168. 164.
    Hanson, K. R., and E. A. Havir: L-Phenylalanine Ammonia-Lyase. IV. Evidence that the Prostetic Group Contains a Dehydroalanyl Residue and Mechanism of Action. Arch. Biochem. and Biophys. 141, 1 (1970).Google Scholar
  169. 165.
    Haskell, T. H., S. A. Fusari, R. P. Frohardt, and Q. R. Bartz: The Chemistry of Viomycin. J. Amer. Chem. Soc. 74, 599 (1952).Google Scholar
  170. 166.
    Häusler, J., und U. Schmidt: Über Pyruvoylaminosäuren. Chem. Ber. 107, 145 (1974).Google Scholar
  171. 167.
    Häusler, J., und U. Schmidt: Hydroxylsubstituierte Cyclodipeptide durch Ringschluß von Pyruvoylaminosä ure-amiden. Chem. Ber. 107, 2804 (1974).Google Scholar
  172. 168.
    Häusler, J., R. Jahn und U. Schmidt: Radikalisch und photochemisch initiierte Oxidation von Aminosäurederivaten. Chem. Ber. 111, 361 (1978).Google Scholar
  173. 169.
    Häusler, J., und U. Schmidt: Ringschlüsse von Pyruvoylpeptiden und Dehydro- peptiden. Mh. Chem. 109, 147 (1978).Google Scholar
  174. 170.
    Hawkes, G. H., and E. W. Rand ALL: High Field 15N Nuclear Magnetic Resonances Spectroscopy of Peptides. Assignments in Viomycin Sulphate. J. Chem. Soc. Chem. Comm. 1977, 546.Google Scholar
  175. 171.
    Hayashi, T., T. Mise, S. Mitachi, K. Yamamoto, and M. Kumada: Asymmetric Hydrogenation Catalyzed by a Chiral Ferrocenylphosphine-Rhodium-Complex. Tetrahedron Letters 1976, 1133.Google Scholar
  176. 172.
    Hayashi, T., M. Tanaka, and I. Ogata: Asymmetric Hydrogenation by Rhodium Complex with d-trans-l,2-bis-(Diphenylphosphinoxy)-cyclopentane as a Chiral Ligand. Tetrahedron Letters 1977, 295.Google Scholar
  177. 173.
    Hedy, P. H., E. B. Hodge, V. V. Young, R. L. Harried, G. A. Brewer, W. F. Phillips, W. F. Runge, H. E. Stavely, A. Pohland, H. Boaz, and H. R. Sullivan: Structure and Reaction of Cycloserine. J. Amer. Chem. Soc. 77, 2345 (1955).Google Scholar
  178. 174.
    Helbling, A. M., und M. Viscontini: 96. Naturstoffe aus Mikroorganismen. Syn-these von racemischen Proferrorosamin und Ferrorosamin. Helv. Chim. Acta 59, 938 (1976).Google Scholar
  179. 175.
    Hellmann, H., und E. Folz: Über den Mechanismus der Reaktionen von quartären Ammoniumsalzen mit Alkalicyanid. Chem. Ber. 88, 1944 (1955).Google Scholar
  180. 176.
    Kondensationen mit Dimethylaminomethyl-aceTamino-malonester-jodmethylat. Ein Beitrag zum Mechanismus der Kondensationsreaktionen quartärer Ammoniumsalze. Chem. Ber. 89, 2000 (1956).Google Scholar
  181. 177.
    Hellmann, H., K. Teichmann und F. Lingens: A-Acylaminoacrylester aus Acyl- aminomalonestern. Chem. Ber. 91, 2427 (1958).Google Scholar
  182. 178.
    Henery-Logan, K. R., and C. G. Chen: Synthesis of Oxygen Analogues of the Penicillins. I. Photocyclisation of 2-Oxoamides to 3-Carbomethoxy-6-hydroxypenams. Tetrahedron Letters 1973, 1103.Google Scholar
  183. 179.
    Herbst, R. M.: The Condensation of A-Keto Acids and Amides. II. Pyruvic Acid and Acetamide. J. Amer. Chem. Soc. 61, 483 (1939).Google Scholar
  184. 180.
    Hiskey, R. G., R. A. Upham, G. M. Beverly, and W. C. Jones, JR.: Sulfur- Containing Polypeptides X. A Study of ß-Elimination of Mercaptides from Cysteine Peptides. J. Org. Chem. 35, 513 (1970).Google Scholar
  185. 181.
    Hoppe, D.: 3-Acyl-2-thioxo-l,3-oxazolidin-4-carbonsäureester und ihre Umwandlung in a-(N-Acylamino)-acrylsäureester. Angew. Chem. 85, 659 (1973); Int. Edit. 12, 656 (1973).Google Scholar
  186. 182.
    Hoppe, D.: 2-Alkylthio-2-oxazoLin-4-carbonsäureester und ihre Umwandlung in a-(N-Alkyl- thiocarbonylamino)-acrylsäureester. Angew. Chem. 85, 660 (1973); Int. Edit. 12, 658 (1973).Google Scholar
  187. 183.
    Hoppe, D.: Metallierte Stickstoffderivate der Kohlensäure in der organischen Synthese. X. 2-Alkylthio-2-oxazoLin-4-carbonsäureester und ihre baseninduzierte Ringöffnung zu 2-N-[(Alkylthio)carbonyl]amino acrylsäureestern. Ann. 1976, 1843.Google Scholar
  188. 184.
    Hoppe, D., und M. Kloft: Metallierte Stickstoff-Derivate der Kohlensäure in der organischen Synthese. XI. α-Isothiocyanatoacrylsäureester. II. Zur Synthese von α-Thiocyanatoacrylsäureestern aus Isothiocyanatoessigsäureestern und Carbonylver- bindungen. Ann. 1976, 1850.Google Scholar
  189. 185.
    Hoppe, D., und R. Follmann: Metallierte Stickstoff-Derivate der Kohlensäure in der organischen Synthese IX. α-(N-alkoxycarbonyl)-aminoacrylsäureester (N-Acyl-α,ß- dehydroaminosäureester) durch baseninduzierte Ringöffnung von 3-Alkoxycarbonyl- 2-thioxo-oxazolidin-4-carbonsäureestern. Chem. Ber. 109, 3062 (1976).Google Scholar
  190. 186.
    Horikawa, H., T. Iwasaki, K. Matsumoto, and M. Miyoshi: A New Synthesis of 2-Alk- oxy- and 2- Acetoxy-2-amino Acids by Anod. Oxidation. Tetrahedron Letters 1971, 191.Google Scholar
  191. 187.
    Huang, F. C., J. A. Chan, C. J. Sih, P. Fawcett, and E. P. Abraham: The Non- participation of α,ß-DehydrovaLinyl Intermediates in the Formation of 5-(L-α-Amino- adipyl)-L-cysteinyl-D-Valine. J. Amer. Chem. Soc. 97, 3858 (1975).Google Scholar
  192. 188.
    Inoue, S., J. Murata, N. Takamatsu, H. Nagano, and Y. Kishi: Synthetic Studies on EchinuLins and Related Natural Products. Part 5. Isolation, Structure and Synthesis of EchinuLin-NeoechinuLin Type Alkaloids Isolated from Aspergillus Amstelodami. Yakugaku Zasshi 97, 576 (1977).Google Scholar
  193. 189.
    Inoue, S., N. Takamatsu, K. Hashizume, and Y. Kishi: Synthetic Studies on Echinulin and Related Products. Part 6. Structure and Synthesis of Aurechinulin. Yakugaku Zasshi 97, 582 (1977).Google Scholar
  194. 190.
    Ito, Y., M. Okano, and R. Oda: Studies on Isocyanides III. The Addition of N,N- Dialkyl Chlorides to Isocyanides. Tetrahedron 22, 447 (1966).Google Scholar
  195. 191.
    Izumi, R., T. Nöda, T. Ando, T. Take, and A. Nagata: Studies on Tuberactino- mycin. III. Isolation and Characterisation of Two Minor Components, Tuberactinomycin B and Tuberactinomycin O. J. Antibiot. 25, 201 (1972).Google Scholar
  196. 192.
    Jen, T., J. Frazee, and J. R. E. Hoover: A Stereospecific Synthesis of C-6(7) MethoxyPenicillin and -cephalosporin Derivatives. J. Org. Chem. 38, 2857 (1973).Google Scholar
  197. 193.
    Kagan, H. B., and T. P. Dang: Asymmetric Catalytic Reduction with Transition Metal Complexes. I. A Catalytic System of Rhodium (I) with (-)-2,3-0-Isopropylidene- 2,3-dihydroxy-l,4-bis(diphenylphosphino)butane, a New Chiral Diphosphine. J. Amer. Chem. Soc. 94, 6429 (1972).Google Scholar
  198. 194.
    Kagan, H. B., N. Langlois, and T. P. Dang: Réduction asymétrique catalysée par des complexes de métaux de transition. IV. Synthèse d’Aminés chirales au moyen d’un complexe de Rhodium et d’Isopropylidene Dihydroxy-2,3-bis-(diphenyl- phosphino)-1,4-butane (DIOP). J. Organomet. Chem. 90, 353 (1975).Google Scholar
  199. 195.
    Kaneda, A., and R. Sudo: The Preparation of a-Amino-a-benzylmercaptopropionic Acid Derivatives. Bull. Chem. Soc. Jap. 43, 2159 (1970).Google Scholar
  200. 195A.
    Katrukha, G. S., S. N. Maevskaja, and A. B. Silaev: Use of Chemical Methods for the Analysis of Amino Acid Sequences in the Polypeptide Antibiotic A-128-OP. Structure of the Antibiotic A-128-OP. Ref. Dokl. Soobshch.-Mendeleevsh. S’ezd Obshch. Prikl. Khim. 1975, 60. Chem. Abstr. 88, 191 458e (1978).Google Scholar
  201. 196.
    Kil’disheva, O. V., L. P. Rasteikene, and I. L. Knunyants: Transformation of Mercapto Amino Acids. IV. 2,3-Dihalo-2-acylaminopropionic Acids. Bull. Acad. Sci. USSR. Div. Chem. Sci. 1955, 231; Chem. Abstr. 50, 4914 (1956).Google Scholar
  202. 197.
    Kil’disheva, O. V., M. G. Lin’kova, and I. L. Knunyants: Transformations of the Mercapto Amino Acids V. 3-Halo-2-hydroxy-2-(acylamino)propionic Acids and Their Derivatives. Bull. Acad. Sci., U.S.S.R., Div. Chem. Sci. 1955, 241. Chem. Abstr. 50, 4914i (1956).Google Scholar
  203. 198.
    Kil’disheva, O. V., M. G. Lin’kova, and I. L. Knunyants: 3-Halo-2-(acylamino)acrylic Acids and Their Derivatives. Izvest. Akad. Nauk. S.S.S.R., Otdel. Khim. Nauk 8, 282 (1955); Bull. Acad. Sci. U.S.S.R., Div. Chem. Sci. 1955, 251; Chem. Abstr. 50, 4915 (1956).Google Scholar
  204. 199.
    Kil’disheva, O. V., M. G. Lin’kova, V. M. Savosina, and I. L. Knunyants: A,P- Disubstituted α-Acylaminocarboxylic Acids II. New Method of Formation of Oxazole-4-carboxylic Acids. Izvest. Akad. Nauk. S.S.S.R., Otdel. Khim. Nauk. 1958, 1348; Chem. Abstr. 53, 7140i (1959).Google Scholar
  205. 200.
    Kiltz, H. H., and E. Grooss: Subtilin III. -Enzymatische Fragmentierung mit Trypsin und Thermolysin. Z. Physiol. Chem. 354, 802 (1973).Google Scholar
  206. 201.
    Subtilin IV. -Sequenz und Sulfidbruckenzuordnung in heterodetem bicyclischen Peptid der Aminosâurereste 20–29. Z. Physiol. Chem. 354, 805 (1973).Google Scholar
  207. 202.
    Kingston, D. G. J., Lord Todd, and D. H. Williams: Antibiotics of the Ostreogrycin Complex. Part III. The Structure of Ostreogrycin A. Evidence Based on Nuclear Magnetic Double Resonance Experiments and High-resolution Mass Spectrometry. J. Chem. Soc. (C) 1966, 1669.Google Scholar
  208. 202A.
    Kingston, D. G. I., P. S. Sarin, Lord Todd, and D. H. Williams: Antibiotics of the Ostreogrycin Complex. IV. The Structure of Ostreogrycin G. J. Chem. Soc. (C) 1966, 1856.Google Scholar
  209. 203.
    Kirby, G. W., and S. Narayanaswami: Biosynthetic Incorporation of Stereoselectively Labelled [P-3H] -Tyrosine into Mycelianamide. J. Chem. Soc. Chem. Comm. 1973, 322.Google Scholar
  210. 204.
    Stereochemical Studies on the Biosynthesis of the a,p-Didehydro-amino-acid Units of Mycelianamide, Cyclopenin and Cyclopenol. J. Chem. Soc. Perkin I 1976, 1564.Google Scholar
  211. 205.
    Kisfaludy, L., A. Patthy, and M. Low: A Beta-Elimination Reaction between Cysteine Derivatives Containing Free SH Group and Dicyclohexylcarbodiimide. Acta Chim. Acad. Sci. Hung. 59, 159 (1969).Google Scholar
  212. 206.
    Kishi, Y., T. Fukuyama, and S. Nakatsuka: A New Method for the Synthesis of Epidithiodiketopiperazines. J. Amer. Chem. Soc. 95, 6490 (1973).Google Scholar
  213. 207.
    Kishi, Y., T. Fukuyama, and S. Nakatsuka: A Total Synthesis of Dehydrogliotoxin. J. Amer. Chem. Soc. 95, 6492 (1973).Google Scholar
  214. 208.
    Kishi, Y., S. Nakatsuka, T. Fukuyama, and M. Havel: A Total Synthesis of Sporidesmin A. J. Aer. Chem. Soc. 95, 6493 (1973).Google Scholar
  215. 209.
    Kitagawa, T., T. Miura, K. Fujiwara, and H. Taniyama: The Total Structure of Viomycin by Sequencial Analysis. Chem. Pharm. Bull. 20, 2215 (1972).Google Scholar
  216. 210.
    Kitagawa, T., T. Miura, and H. Taniyama: Characterization of Viomycin and Its Acyl Derivatives. Chem. Pharm. Bull. 20, 2176 (1972).Google Scholar
  217. 211.
    Kitagawa, T., T. Miura, S. Tanaka, and H. Taniyama: Relationships between Antimicrobial Activities and Chemical Structures of Reduced Products of Viomycin. J. Antibiot. 26, 528 (1973).Google Scholar
  218. 212.
    Kitagawa, T., T. Miura, Y. Sawada, K. Fujiwara, R. Ito, and H. Taniyama: Studies on Viomycin. VII. Oxidative Modifications of Viomycin. Chem. Pharm. Bull. 22, 1827 (1974).Google Scholar
  219. 213.
    Kitagawa, T., T. Miura, K. Mori, H. Taniyama, K. Kawano, and Y. Kyogoku: Studies on Viomycin X. Carbon-13-nuclear Magnetic Resonance Studies on Viomycin and Its Related Compounds. Chem. Pharm. Bull. 25, 280 (1977).Google Scholar
  220. 214.
    Kluender, H., C. H. Bradley, C. H. Sih, P. Fawcett, and E. P. Abraham: Synthesis and Incorporation of (2S,3S)-[4-13C] Valine into 3-Lactam Antibiotics. J. Amer. Chem. Soc. 95, 6149 (1973).Google Scholar
  221. 215.
    Kluender, H., F. C. Huang, A. Fritzberg, H. Schnoes, C. J. Sih, P. Fawcett, and E. P. Abraham: Studies in the Incorporation of (2S,3R)-[4,4,4-2H3]Valine and (2S, 3 S)-[4,4,4-2H3]Valine into β-Lactam Antibiotics. J. Amer. Chem. Soc. 96, 4054 (1974).Google Scholar
  222. 216.
    Knowles, W. S., and M. J. Sabacky: Catalytic Asymmetric Hydrogénation of P-Substituted α-(Acylamido) acrylic Acids and/or Their Salts. Ger. Often. 2,123,063. Chem. Abstr. 76, 60074f (1972).Google Scholar
  223. 217.
    Knowles, W. S., M. J. Sabacky, and B. D. Vineyard: 3-(3,4-Dihydroxyphenyl)-L- alanine. Ger. Often. 2,210,938; Chem. Abstr. 77, 165 073d (1972).Google Scholar
  224. 218.
    Knowles, W. S., M. J. Sabacky, and B. D. Vineyard: Asymmetric Hydrogénation Yields α-Amino Acids. Chem. Technol. 1972, 2 (10), 590.Google Scholar
  225. 219.
    Knowles, W. S., M. J. Sabacky, and B. D. Vineyard: Catalytic Asymmetric Hydrogénation. J. Chem. Soc. Chem. Comm. 1972, 10.Google Scholar
  226. 220.
    Knowles, W. S., and M. J. Sabacky: Catalytic Asymmetric Hydrogénation of α-(Acylamino)acrylic and -cinnamic Acids. Brit. 1,349,895 (cl. C 07 c), 10 Apr 1974, Appl. 17,256/71, 26 May 1971; Chem. Abstr. 81, 25942 (1974).Google Scholar
  227. 221.
    Knowles, W. S., M. J. Sabacky, and B. D. Vineyard: α-Amino Acids by Asymmetric Hydrogénation. Adv. Chem. Ser. 1974, 132.Google Scholar
  228. 222.
    Knowles, W. S., M. J. Sabacky, B. D. Vineyard, and D. J. Weinkauff: Asymmetric Hydrogénation with a Complex of Rhodium and a Chiral Bisphosphine. J. Amer. Chem. Soc. 97, 2567 (1975).Google Scholar
  229. 223.
    Kobayashi, T., K. Iino, and T. Hiraoka: A Novel Synthetic Route to 7α-Methow- cephalosporins. J. Amer. Chem. Soc. 99, 5505 (1977).Google Scholar
  230. 224.
    Koncewicz, M., P. Mathiaparanam, T. F. Uchytil, L. Sparapano, J. Tam, D. H. Rich, and R. D. Durbin: Sequence and Optical Configuration of the Amino Acids in Tentoxin. Biochem. Biophys. Res. Comm. 53, 653 (1973).Google Scholar
  231. 225.
    Koppel, G. A., and R. E. Koehler: Functionalisation of C6(7) of Penicillins and Cephalosporins. A One-Step Stereoselective Synthesis of 7-α-Methoxycephalosporins C. J. Amer. C. em. Soc. 95, 2403 (1973).Google Scholar
  232. 226.
    Kurita, H., Y. Chigira, M. Masaki, and M. Ohta: Synthesis of 4-Alkylidene- and 4-Aralkylidene-2-chloromethyl-5-oxazolones and N- (Chloroacetyl) dehydroamino Acids. Bull. Chem. Soc. Japan 41, 2758 (1968).Google Scholar
  233. 227.
    Kraft, W. M., and R. M. Herbst: The Condensation of Carbonyl Compounds with Amides. Aliphatic Aldehydes and Pyruvic Acid with Aliphatic Carbamates. J. Org. Chem. 10, 483 (1945).Google Scholar
  234. 228.
    Kotula, Z., E. Zybura, and Z. Kowszyk-Gindifer: Abstracts, 7th International Symposium on the Chemistry on Natural Products, Riga Latvia, 1970, p. 629.Google Scholar
  235. 229.
    Kotula, Z., E. Zybura, and Z. Kowszyk-Gindifer: De-P-lysylviomycin. I. Isolation and Physicochemical Properties. Act. Pol. Pharm. 30, 431 (1973).Google Scholar
  236. 230.
    Lee, S., H. Aoyagi, Y. Shimohigashi, and N. Izumiya: Syntheses of Cyclotetra- depsipeptides, AM-Toxin I and its Analogs. Tetrahedron Letters 1976, 843.Google Scholar
  237. 231.
    Leonard, N. J., and G. E. Wilson, Jr.: Stereospecific Synthesis and Oxidative Transformation of a Synthetic 1,4-Thiazepine from D-Penicillamine. Tetrahedron Letters 1964, 1465.Google Scholar
  238. 232.
    Leonard, N. J., and G. E. Wilson: The Synthesis and Oxidative Rearrangement of Some 1,4-Thiazepines Related to the Penicillins. J. Amer. Chem. Soc. 86, 5307 (1964).Google Scholar
  239. 233.
    Leonard, N. J., and R. Y. Ning: The Synthesis and Stereochemistry of Substituted 1,4-Thiazepines Related to Penicillins. J. Org. Chem. 31, 3928 (1966).Google Scholar
  240. 234.
    Levi, A., G. Modena, and G. Scorrano: Asymmetric Reduction of Carbon-Nitrogen. Carbon-Oxygen, and Carbon-Carbon Double Bonds by Homogenous Catalytic Hydro-génation. J. Chem. Soc. Chem. Comm. 1975, 6.Google Scholar
  241. 235.
    Liesch, J. M., and K. L. Rinehart, Jr.: Berninamycin. 3. — Total Structure of Berninamycin A. J. Amer. Chem. Soc. 99, 1645 (1977).Google Scholar
  242. 236.
    Love, A. L., and R. K. Olsen: Orientation in Electrophilic Addition Reactions to 2-Ace Tamidoacrylic Acid Derivatives. J. Org. Chem. 37, 3431 (1972).Google Scholar
  243. 237.
    Lucente, G., G. M. Lucente, and A. Romeo: Synthesis of Various Compounds Derived from α,α-Diaminopropionic Acid. Ann. Chim. (Rome) 56, 572 (1966).Google Scholar
  244. 238.
    Lucente, G., C. Gallina, and A. Romeo: Some Azlactones. Ann. Chim. (Rome) 56, 1192 (1966).Google Scholar
  245. 239.
    Lucente, G., P. Pantanella, and A. Romeo: Synthesis of 2-Alkoxy-2-phenyl- aceTamidocarboxylic Acids. J. Chem. Soc. (C) 1967, 1264.Google Scholar
  246. 240.
    Lucente, G., A. Romeo, and G. Zanotti: A New Route to 2-Acylamido-2-hydroxy- carboxylic Esters. Chem. and Ind. 1968, 1602.Google Scholar
  247. 241.
    Lucente, G., and D. Rossi: Synthesis of 2-Alkoxy- and 2-Hydroxy-2-acylamino esters. Chem. and Ind. 1973, 324.Google Scholar
  248. 242.
    Machin, P. J., and P. G. Sammes: Pyrazine Chemistry. Part VI. Addition of Sulphur Nucleophiles across Dehydrocyclodipeptides. J. C. S. Perkin Transactions I 1974, 698.Google Scholar
  249. 243.
    Machin, P. J., and P. G. Sammes: Pyrazine Chemistry. Part VII. Oxidations of Piperazine-2,5-diones and Derivatives. J. Chem. Soc. Perkin I 1976, 624.Google Scholar
  250. 244.
    Machin, P. J., and P. G. Sammes: Pyrazine Chemistry. Part VIII. Oxidation involving 3-Arylmethylene-piperazine- 2,5-diones. J. C. S. Perkin I 1976, 628.Google Scholar
  251. 245.
    Maclaren, J. A., W. E. Savige, and J. M. Swan: Amino Acids and Peptides IV, Intermediates for the Synthesis of Certain Cystine-containing Peptide Sequences in Insulin. Austr. J. Chem. 11, 345 (1958).Google Scholar
  252. 246.
    Maclaren, J. A.: Amino Acids and Peptides V., The Alkaline Saponification of N-Benzyloxycarbonyl Peptide Esters. Austral. J. Chem. 11, 360 (1958).Google Scholar
  253. 247.
    Marchand, J., M. Pais, X. Monseur, and F.-X. Jarreau: Alcaloïdes Peptidiques — VII. Les Lasiodines A et B, Alkaloi’des du Lasiodiscus Marmoratus C. H. Wright (Rhamnacées). Tetrahedron 25, 937 (1969).Google Scholar
  254. 248.
    Marchelli, R., A. Dossena, and G. Casnati: Biosynthesis of Neochinulin by Aspergillus Amstelodami from cyclo-L-[U-14C]Alanyl-L-[5,7-3H2]tryptophyl. J. Chem. Soc. Chem. Comm. 1975, 779.Google Scholar
  255. 249.
    Marchelli, R., A. Dossena, A. Pochini, and E. Dradi: The Structures of Five New Didehydropetides related to Neochinulin, Isolated from Aspergillus Amstelodami. J. Chem. Soc., Perkin Transactions I 1977, 713.Google Scholar
  256. 250.
    Märki, W., und R. Schwyzer: Herstellung von DL-N-Benzyloxycarbonyl-y-carboxy- gluTaminsäure-γ,γ’-di-t-butyl-a-methyl-ester, einem für die Peptidsynthese geeigneten Derivat der neuen Aminotricarbonsäure aus Prothrombin. Helv. Chimica Acta 58, 1471 (1975).Google Scholar
  257. 251.
    Marschall, J. A., T. F. Schlaf, and J. G. Csernansky: A Convenient Synthesis of Diketopiperazines via Aminolysis of N-Pyruvoyl-α-amino Esters. Synth. Comm. 5, 237 (1975).Google Scholar
  258. 252.
    Martell, A. E., and R. M. Herbst: Condensation of Amides with Carbenyi Compounds: Benzyl Carbamate with Aldehydes and a-Keto Acids. J. Org. Chem. 6, 878 (1941).Google Scholar
  259. 253.
    Masaki, M., C. Shin, H. Kurita, and M. Ohta: Independent Isolation of a Primary Enamine and the Tautomeric Imine. J. C. S. Chem. Comm. 1968, 1447.Google Scholar
  260. 254.
    Massen, J. A., T. A. J. W. Wajer, and T. J. De Boer: C-Nitroso Compounds, Part VIII. A Synthesis of Aldimines from Phosphonate-Carbanions and Nitroso-Alkanes. Ree. Trav. Chim. 88, 5 (1969).Google Scholar
  261. 255.
    Mauger, A. B.: Peptide Antibiotic Biosynthesis: A New Approach. Experientia 24, 1068 (1968).Google Scholar
  262. 256.
    Mayo, P. De, and A. Stoessel: Griseoviridin: The C6-Fragment. Canad. J. Chem. 38, 950 (1960).Google Scholar
  263. 257.
    Mccapra, F., and M. Roth: Cyclisation of a Dehydropeptide Derivative. A Model for Cypridina Luciferin Biosynthesis. J. C. S. Chem. Commun. 1972, 894.Google Scholar
  264. 258.
    Mcgahren, W. J., G. O. Morton, M. P. Kunstmann, and G. A. Ellestad: Carbon-13 Nuclear Magnetic Resonances Studies on a New Antitubercular Peptide Antibiotic LL-BM547B. J. Org. Chem. 42, 1282 (1977).Google Scholar
  265. 259.
    Mchale, D., P. Mamalis, and J. Green: Partial Racemisation Accompanying the Acid Hydrolysis of Dibenzoyl-D-cystathionine and -lanthionine. J. Chem. Soc. 1960, 2847.Google Scholar
  266. 260.
    Mcinnes, A. G., A. Taylor, and J. A. Walter: The Structure of Chetomin. J. Amer. Chem. Soc. 98, 6741 (1976).Google Scholar
  267. 261.
    Mecham, D. K., and H. S. Olcott: Phosvitin, the Principal Phosphoprotein of Egg Yolk. J. Amer. Chem. Soc. 71, 3670 (1949).Google Scholar
  268. 262.
    Meyer, W. L., G. E. Templeton, and C. I. Grable: The Structure of Tentoxin. Tetrahedron Letters 1971, 2357.Google Scholar
  269. 263.
    Meyer, W. L., L. F. Kuyper, R. B. Lewis, G. E. Templeton, andS. H. Woodhead: Amino Acid Sequence and Configuration of Tentoxin. Biochem. Biophys. Res. Comm. 56, 234 (1974).Google Scholar
  270. 264.
    Meyer, W. L., L. F. Kuyper, D. W. Phelps, and A. W. Cordes: Structure of the Cyclic Tetrapeptide Tentoxin. Crystal and Molecular Structure of the Dihydro Derivative. J. Chem. Soc. Chem. Comm. 1974, 339.Google Scholar
  271. 265.
    Moderhack, D., and G. Zinner: 2-(N-Alkyl-hydroxylamino)säureamide als potentielle 2-Oxo-säureamide. Chemiker Zeitung 98, 110 (1974).Google Scholar
  272. 266.
    Morell, J. L., P. Fleckenstein, and E. Grooss: Stereospecific Synthesis of (2S,3R)- 2-Amino-3-mercaptobutyric Acid — an Intermediate for Incorporation into ß-Methyl- lanthionine-Containing Peptides. J. Org. Chem. 42, 355 (1977).Google Scholar
  273. 767.
    Morin. R. B.. and E. M. Gordon: Chemistry of Dehydropeptides. Formation of Dehydropeptides by Oxidation of Peptide Oxazolones. Tetrahedron Letters 1973, 2163.Google Scholar
  274. 268.
    Morris, H. R., M. R. Thompson, and A. Dell: Synthesis and Proof of Structure of the New Amino Acid in Prothrombin. Biochem. and Biophys. Research Comm. 62, 856 (1975).Google Scholar
  275. 269.
    Mukerjee, A. K., and A. K. Singh: Reactions of Natural and Synthetic ß-Lactams. Synthesis 1973, 547.Google Scholar
  276. 270.
    Müller, L.: Über Reaktionen von 41-bromierten 2-Trifluormethyl-A3-oxazolonen-(5) mit Aminen und Sulfoxiden. Dissertation Technische Universität München, 1971.Google Scholar
  277. 271.
    Nagarajan, R., L. D. Boeck, M. Gorman, R. L. Hamill, C. E. Higgens, M. M. Hoehn, W. M. Stark, and J. G. Whitney: ß-Lactam Antibiotics from Streptomyces. J. Amer. Chem. Soc. 93, 2308 (1971).Google Scholar
  278. 272.
    Nakagawa, Y., T. Tsuno, K. Nakajima, M. Iwai, H. Kawai, and K. Okawa: Studies on Hydroxy Amino Acids IV. Syntheses of Several Peptides Containing Aziri- dinecarboxylic Acid Derived from the Corresponding Hydroxy Amino Acid Derivatives. Bull. Chem. Soc. Jap. 45, 1162 (1972).Google Scholar
  279. 273.
    Nakajima, K., H. Kawai, M. Takai, and K. Okawa: Studies on Hydroxy Amino Acids. VI. Formation of the Oxazoline Derivatives from N-Acyl-ß-hydroxy Amino Acid Peptides. Bull. Chem. Soc. Jap. 50, 917 (1977).Google Scholar
  280. 274.
    Nakatsuka, S., H. Tanino, and Y. Kishi: Biogenetic-Type Synthesis of Penicillin- Cephalosporin Antibiotics. I. A Stereocontrolled Synthesis of the Penam- and Cephem-Ring Systems from an Acyclic Tripeptide Equivalent. J. Amer. Chem. Soc. 97, 5008 (1975).Google Scholar
  281. 275.
    Nakatsuka, S., H. Tanino, and Y. Kishi:Biogenetic-Type Synthesis of Penicillin-Cephalosporin Antibiotics. II. An Oxidative Cyclisation Route to ß-Lactam ThiazoLine Derivatives. J. Amer. Chem. Soc. 97, 5010 (1975).Google Scholar
  282. 276.
    Nakayama, M., G. Maeda, T. Kaneko, and H. Katsura: Asymmetric Reduction of Some Dehydrophenylalanyl Peptides. Bull. Chem. Soc. Jap. 44, 1150 (1971).Google Scholar
  283. 277.
    Nebelin, E., und E. Grooss: Subtilin V. — Sequenz und Sulfidbrückenzuordnung im heterodeten tricyclischen Peptid der Aminosäurereste 3–19. Z. Physiol. Chem. 354, 807 (1973).Google Scholar
  284. 278.
    Nicolet, B. H.: The Mechanism of Sulfur Lability in Cysteine and Its Derivatives. II. The Addition of Mercaptan to Benzoylaminocinnamic Acid Derivatives. J. Biol. Chem. 95, 389 (1932).Google Scholar
  285. 279.
    Nicolet, B. H.: The Special Reactivity of Peptides. Science 81, 181 (1935).Google Scholar
  286. 280.
    Nöda, T., T. Take, and A. Nagata: Chemical Studies on Tuberactinomycin. III. The Chemical Structure of Viomycin (Tuberactinomycin B). J. Antibiot. 25, 427 (1972).Google Scholar
  287. 281.
    Nöda, Y., K. Takai, T. Tokuyama, S. Narumiya, H. Ushiro, and O. Hayaishi: Enzymatic Oxidation of Acetyltryptophanamide- and Tryptophan-Containing Peptides. Formation of Dehydrotryptophan. J. Biol. Chem. 252, 4413 (1977).Google Scholar
  288. 282.
    Ohler, E., H. Poisel, F. Tataruch, und U. Schmidt: Synthese des Epidithio-L- prolyl-L-proLinanhydrids. Chem. Ber. 105, 635 (1972).Google Scholar
  289. 283.
    Ohler, E., F. Tataruch, und U. Schmidt: Nucleophile Einführung von Schwefel-funktionen über Sulfone und Hydroxyderivate cyclischer Dipeptide (Dioxopiperazine). Chem. Ber. 106, 165 (1973).Google Scholar
  290. 284.
    Ohler, E., F. Tataruch, und U. Schmidt:Über die Einführung von Sauerstoffunktionen in Prolyl-proLinanhydrid mit Bleitetraacetat: Ein neuer Weg zum Epidisulfid des Prolyl-proLinanhydrids. Chem. Ber. 106, 396 (1973).Google Scholar
  291. 285.
    Ohler, E., und U. Schmidt: Hydroxylsubstituierte Cyclodipeptide durch Ringschluß von Pyruvoylaminosäureamiden. II. Zweifacher Ringschluß. Chem. Ber. 108, 2907 (1975).Google Scholar
  292. 286.
    Ohler, E., und U. Schmidt:Über Dehydroaminosäuren IV. Ringschlüsse an Dehydropeptiden. Chem. Ber. 110, 921 (1977).Google Scholar
  293. 287.
    Ohler, E., E. Prantz, und U. Schmidt: Über Dehydroaminosäuren. XIV. Biomimeti-sche Versuche zur Cysteinbildung. — Addition von SH-Verbindungen an Dehydro-aminosäuren. Chem. Ber. 111, 1058 (1978).Google Scholar
  294. 287A.
    Ohler, E., und U. Schmidt: Schiffsche Basen von Dehydroaminosäuren aus 2-Aryl-4-thiazolidincarbonsäuren. — Erste Synthese eines N-Aryliden-dehydroalanin- esters. Chem. Ber. 112, 107 (1979).Google Scholar
  295. 288.
    Okawa, K., T. Kinutani, and K. Sakai: Studies on Hydroxy Amino Acids. I. A New Synthesis of Aziridine Derivative from ß-Hydroxy-a-Amino Acid. Bull. Chem. Soc. Jap. 41, 1353 (1968).Google Scholar
  296. 289.
    Okawa, K., K. Nakajima, T. Tanaka, and Y. Kawana: Studies on Hydroxy AminoGoogle Scholar
  297. Acids V. Synthesis and N-Acylation of 3-Methyl-L-azylylglycine Benzyl Ester. Chemistry Letters 1975, 591.Google Scholar
  298. 290.
    Okuno, T., Y. Ishita, K. Sawai, and T. Matsumoto: Characterisation of Alter- nariolide, a Host-specific Toxin Produced By Alternaria Mali. Chemistry Letters 1974, 635.Google Scholar
  299. 291.
    Okuno, T., Y. Ishita, A. Sugawara, Y. Mori, K. Sawai, and T. Matsumoto: Structure of the Biological Active Cyclopeptides Produced by Alternaria Mali Roberts. Tetrahedron Letters 1975, 335.Google Scholar
  300. 292.
    Olsen, R. K., and A. J. Kolar: N-Acylimines as Intermediates in Reactions of A- Substituted α-Amino Acids and Dehydroamino Acids. Tetrahedron Letters 1975, 3579.Google Scholar
  301. 293.
    Ottenheijm, H. C. J., T. F. Spande, and B. Witkop: Approaches to Analogs of Anhydrogliotoxin. J. Amer. Chem. Soc. 95, 1989 (1973).Google Scholar
  302. 294a.
    Ottenheijm, H. C. J., N. P. E. Vermeulen, und L. J. F. M. Breuer: Modellversuche zur Synthese von Anhydrogliotoxin-Analoga: Eine bequeme Synthese von Thiazolo- indolon-Derivaten. Liebigs Ann. Chem. 1974, 206.Google Scholar
  303. 294b.
    Ottenheijm, H. C. J., A. D. Potman, and T. Van Vroonhoven: Approaches to Analogues of Anhydrogliotoxin IV. Synthesis and Reactions of 2-Mercapto-2-amino- propionic Acid Derivatives. Ree. Trav. Chim. Pays-Pas 94, 135 (1975).Google Scholar
  304. 294c.
    Ottenheijm, H. C. J., J. A. M. Hulshof, and R. J. F. Nivard: Approaches to Analogs of Anhydrogliotoxin. 3. Synthesis of a Desthiomethylene Analog. J. Org. Chem. 40, 2147 (1975).Google Scholar
  305. 295a.
    Ottenheijm, H. C. J., G. P. C. Kerkhoff, J. W. H. A. Bijen, and T. F. Spande: A three-step Synthesis of a Gliotoxin Analogue with Anti-reverse Transcriptase Activity. J. C. S. Chem. Comm. 1975, 768.Google Scholar
  306. 295b.
    Ottenheijm, H. C. J., J. D. M. Herscheid, G. P. C. Kerkhoff, and T. F. Spande: Approaches to Analogs of Dehydrogliotoxin VI. An Efficient Synthesis of a Glio-toxin Analog with Anti-reverse Transcriptase Activity. J. Org. Chem. 41, 3433 (1976).Google Scholar
  307. 296.
    Pascard, C., A. Ducruix, J. Lunel, and T. Prange: Highly Modified Cysteine- Containing Antibiotics. Chemical Structure and Configuration of Nosiheptide. J. Amer. Chem. Soc. 99, 6418 (1977).Google Scholar
  308. 297.
    Patchornik, A., M. Sokolovsky, and T. Sadeh: Proc. of the 5th Internat. Congr. Biochemistry, Moscow 1961, 11.Google Scholar
  309. 298.
    Patchornik, A., and M. Sokolovsky: Oxidative Cleavage of Dehydroalanine (a-Amino-Acrylic Acid) Peptides. Bull. Research Council of Israel, Proc. 30th Meeting of the Israel Chem. Soc. IIA, 80 (1962).Google Scholar
  310. 299.
    Patchornik, A., and M. Sokolovsky: Non-Enzymatic Cleavage of Peptide Chains at the Cysteine and Serine Residues. In: Peptides: Proceedings of the Fifth European Symposium. Oxford, p. 253. September 1962. Pergamon Press, 1963.Google Scholar
  311. 300.
    Patchornik, A., and M. Sokolovsky: Nonenzymatic Cleavages of Peptide Chains at the Cysteine and Serine Residues through their Conversion into Dehydroalanine. I. Hydrolytic and Oxi-dative Cleavage of Dehydroalanine Residues. J. Amer. Chem. Soc. 86, 1206 (1964).Google Scholar
  312. 301.
    Patel, S. M., J. O. Currie, JR., and R. K. Olsen: The Synthesis of N-Acyl-α- mercaptoalanine Derivatives. J. Org. Chem. 38, 126 (1973).`Google Scholar
  313. 302.
    Photaki, I.: Transformation of Serine to Cysteine. ß-Elimination Reactions in Serine Derivatives. J. Amer. Chem. Soc. 85, 1123 (1963).Google Scholar
  314. 303.
    Photaki, I., and V. Bardakos: Transformation of L-Serine to L-Cysteine. Ex- perientia 1965, 371.Google Scholar
  315. 304.
    Photaki, I., and V. Bardakos:Transformation of L-Serine Peptides to L-Cysteine Peptides. J. Amer. Chem. Soc. 87, 3489 (1965).Google Scholar
  316. 305.
    Photaki, I., and V. Bardakos:Transformation of ß-Chloro-L-alanine Peptides into L-Cysteine Peptides. J. C. S. Chem. Comm. 1974, 818.Google Scholar
  317. 306.
    Pieroni, O., G. Montagnoli, A. Fissi, S. Merlino, and F. Ciardelli: Structure and Optical Activity of Unsaturated Peptides. J. Amer. Chem. Soc. 97, 6820 (1975).Google Scholar
  318. 307.
    Poisel, H., und U. Schmidt: Syntheseversuche in der Reihe der 3,6-Epidithio-2,5- dioxopiperazin-Antibiotika Gliotoxin, Sporidesmin, Aranotin und Chaetocin. II. Chem. Ber. 104, 1714 (1971).Google Scholar
  319. 308.
    Poisel, H., und U. Schmidt:Über die elektrophile Einführung von Alkylgruppen und Schwefelfunktionen in den 2,5-Dioxopiperazinkern. Chem. Ber. 105, 625 (1972).Google Scholar
  320. 309.
    Poisel, H., und U. Schmidt:Asymmetrische Induktion bei Reaktionen von Aminosäuren und Peptiden, I. Asymmetrische Synthese aromatischer a-Aminosäuren und N-Methyl-a-Aminosäuren. — Synthese von L-Dopa. — Über die katalytische Hydrierung ungesättigter Cyclodipeptide. Chem. Ber. 106, 3408 (1973).Google Scholar
  321. 310.
    Poisel, H., und U. Schmidt:Über Dehydroaminosäuren II, Dehydroaminosäuren aus Aminosäuren. Chem. Ber. 108, 2547 (1975).Google Scholar
  322. 311.
    Poisel, H., und U. Schmidt:Über Dehydroaminosäuren III. Additionen an a-Iminocarbonsäuren. Chem. Ber. 108, 2917 (1975).Google Scholar
  323. 312.
    Poisel, H., und U. Schmidt:Synthese von a,ß-Dehydroaminosäureestern und N-tert. Butoxycarbonyl-a,ß- dehydroaminosäuren. Angew. Chem. 88, 295 (1976). Angew. Chem. Int. Ed. Engl. 15, 294 (1976).Google Scholar
  324. 313.
    Poisel, H.: Über Dehydroaminosäuren VII, Synthese von Dehydroaminosäureestern. Chem. Ber. 110, 942 (1977).Google Scholar
  325. 314.
    Poisel, H.:Über Dehydroaminosäuren VIII, N-Acyl-a,ß-dehydroaminosäuren durch Um- lagerung von N-Acyl-a-iminosäuren. Chem. Ber. 110, 948 (1977).Google Scholar
  326. 314A.
    Poisel, H.:oc-Ketoester aus a-Aminosäureestern. Chem. Ber. 111, 3136 (1978). 314B. Poisel, H., and U. Schmidt: Unpublished Results.Google Scholar
  327. 315.
    Pojer, P. M., and I. D. Rae: Synthesis of 2-Benzamido-2-mercaptopropanoic Acid. Tetrahedron Letters 1971, 3077.Google Scholar
  328. 316.
    Pojer, P. M., and I. D. Rae: Synthesis of 2-Benzamido-2-mercaptopropanoic Acid from 4-Methyl-2-phenyl- 2-oxazoLin-5-one. Austral. J. Chem. 25, 1737 (1972).Google Scholar
  329. 317.
    Prang£, T., A. Ducruix, C. Pascard, and J. Lunel: Structure of Nosiheptide, a Polythiazole-Containing Antibiotic. Nature 265, 189 (1977).Google Scholar
  330. 318.
    Price, V. E., and J. P. Greenstein: A New Synthesis of Chloroacetyldehydroalanine. Arch. Biochem. 14, 249 (1947).Google Scholar
  331. 319.
    Price, V. E., and J. P. Greenstein: Acetylated Dehydroamino Acids. Arch. Biochem. 18, 383 (1948).Google Scholar
  332. 320.
    Price, V. E., and J. P. Greenstein: N-Acetylated and N-Methylated Glycyldehydroalanine. J. Biol. Chem. 173, 337 (1948).Google Scholar
  333. 321.
    Rambacher, P.: Weitere einfache Cystin-Synthesen aus a-AceTaminoacrylsäure oder Serin und Thioharnstoff. Chem. Ber. 101, 3433 (1968).Google Scholar
  334. 322.
    Rao, Y. S., and R. Filler: Geometrie Isomers of 2-Aryl(aralkyl)-4-arylidene (alkylidene)-5(4H)-oxazolones. Synthesis 1975, 749.Google Scholar
  335. 323.
    Ratcliffe, R. W., and B. G. Christensen: Total Synthesis of ß-Lactam Antibiotics III. (±-Cefoxitin.) Tetrahedron Letters 1973, 4653.Google Scholar
  336. 324.
    Reusser, F.: Mode of Action of Berninamycin. An Inhibitor of Protein Biosynthesis. Biochemistry 8, 3303 (1969).Google Scholar
  337. 325.
    Rich, D. H., and P. Mathiaparanam: Synthesis of the Cyclic Tetrapeptide Tentoxin. Effect of an N-Methyldehydrophenylalanyl Residue on Conformation of Linear Tetrapeptides. Tetrahedron Letters 1974, 4037.Google Scholar
  338. 326.
    Rich, D. H., J. P. Tam, P. Mathiaparanam, J. A. Grant, and C. Mabuni: General Synthesis of Didehydro-amino-acids and Peptides. J. C. S. Chem. Comm. 1974, 897.Google Scholar
  339. 327.
    Rich, D. H., and J. P. Tam: Synthesis of Didehydropeptides from Peptides Containing 3-Alkylthio-Amino Acid Residues. Tetrahedron Letters 1975, 211.Google Scholar
  340. 328.
    Rich, D. H., J. P. Tam, P. Mathiaparanam, and J. Grant: Selective N-Methylation of Dehydroamino Acids and Peptides. Synthesis 1975, 402.Google Scholar
  341. 329.
    Rich, D. H., and J. P. Tam: A Method for Introducing Secondary Amide Bonds into Strained Cyclic Peptides. Tetrahedron Letters 1977, 749.Google Scholar
  342. 330.
    Richards, K. D., A. J. Kolar, A. Srinivasan, R. W. Stephenson, and R. K. Olsen: The Reaction of Dialkylcopper Lithium Reagents with 3-Halo-2-acylaminoacrylic Acids. J. Org. Chem. 41, 3674 (1976).Google Scholar
  343. 331.
    Riley, G., J. H. Turnbull, and W. Wilson: O-Phosphorylserine Derivatives. Chem. and Ind. 1953, 1181.Google Scholar
  344. 332.
    Riley, G., J. H. Turnbull, and W. Wilson: Synthesis of Some Phosphorylated Amino-hydroxy-acids and Derived Peptides related to the Phosphoproteins. J. Chem. Soc. 1957, 1373.Google Scholar
  345. 333.
    Riordan, J. M., and C. H. Stammer: The Direct Conversion of N-Acyl-a-amino Acids into N-Acyl-a,ß-unsaturated a-Amino Acids. Tetrahedron Letters 1971, 4969.Google Scholar
  346. 334.
    Riordan, J. M., and C. H. Stammer: Synthesis of Unsaturated Azlactones from N-Acylamino Acids. J. Org. Chem. 39, 654 (1974).Google Scholar
  347. 335.
    Riordan, J. M., and C. H. Stammer: o-Chloranil Oxidation of Azlactones. Tetrahedron Letters 1976, 1247.Google Scholar
  348. 336.
    Riordan, J. M., M. Sato, and C. H. Stammer: o-Chloranil-Azlactone Adducts and Their Conversion to Unsaturated Amino Acid Derivatives. J. Org. Chem. 42, 236 (1977).Google Scholar
  349. 337.
    Rothstein, E.: Experiments in the Synthesis of Derivatives of α-Aminoacrylic Acid from Serine and N-Substituted Serines. J. Chem. Soc. 1949, 1968.Google Scholar
  350. 338.
    Saegusa, T., N. Taka-Ishi, and Y. Ito: The Thermal Rearrangement and Degradation of 2,3-Bis(alkylimino)oxetane. Bull. Chem. Soc. Jap. 44, 1121 (1971).Google Scholar
  351. 339.
    Saito, T., Y. Sugimura, Y. Iwano, K. Iino, and T. Hiraoka: A New Synthetic Route to 7α-Methoxy-cephalosporins. J. Chem. Soc., Chem. Commun. 1976, 516.Google Scholar
  352. 340.
    Sakakibara, S.: Studies on Dehydroalanine Derivatives. IV. Synthesis of N-Phthaloyl- Dehydroalanine by Thermal Decomposition of Cysteine and Serine in the Presence of Phthalic Anhydride. Bull. Chem. Soc. Jap. 34, 171 (1961).Google Scholar
  353. 341.
    Sammes, P. G.: Naturally Occurring 2,5-Dioxopiperazines and Related Compounds. In: Fortschritte der Chemie organischer Naturstoffe (W. Herz, H. Grisebach, G. W. Kirby), Vol. 32, p. 51. Wien-New York: Springer. 1975.Google Scholar
  354. 342.
    Sammes, P. G.: Recent Chemistry of the ß-Lactam Antibiotics. Chem. Rev. 1976, 113.Google Scholar
  355. 343.
    Sasaki, T.: Über die Kondensation von Glycinanhydrid mit Aldehyden. Eine neue Synthese von d,l-Phenylalanin und d,l-Tyrosin. Chem. Ber. 54, 163 (1921).Google Scholar
  356. 344.
    Sasaki, T., und T. Hashimoto: Über die Kondensation einiger Dipeptidanhydride mit Benzaldehyd. Chem. Ber. 54, 168 (1921).Google Scholar
  357. 345.
    Sato, T., and T. Hino: Decarboxylative C-S Bond Formation. Synthesis of 1,4- Dimethyl-3,6-epidithio-2,5-piperazinedione and Related Compounds. Chem. Pharm. Bull. 24, 285 (1976).Google Scholar
  358. 346.
    Savard, K., E. M. Richardson, and G. A. Grant: Synthesis of a New a-Amino Acid, S- Methyl- ß, ß-dimethy Icy steine. Can. J. Res. 24B, 28 (1946).Google Scholar
  359. 346A.
    Schmidt, H., and W. Steglich: Private Communication.Google Scholar
  360. 347.
    Schmidt, U., A. Perco, und E. Ohler: Über Dehydroaminosäuren, I. Ringschluß des Z-Dehydroalanyl-L-proLin-N-methylamids zum Z-Amino-cyclodipeptid durch Amidaddition an die C = C-Doppelbindung. Chem. Ber. 107, 2816 (1974).Google Scholar
  361. 348.
    Schmidt, U., und E. Ohler: Optische Induktion bei der biomimetischen Cystein- bildung. Angew. Chem. 88, 54 (1976), Angew. Chem., Int. Ed. Engl. 15, 42 (1976).Google Scholar
  362. 349.
    Schmidt, U., und J. Häusler: Radikalische Oxidation von Aminosäurederivaten. Angew. Chem. 88, 538 (1976); Angew. Chem. Int. Ed. Engl. 15, 497 (1976).Google Scholar
  363. 350.
    Schmidt, U., und E. Ohler: Einfache Synthese von A,ß-Dehydroaminosäureestern. Angew. Chem. 89, 344 (1977). Angew. Chem. Int. Ed. Engl. 16, 327 (1977).Google Scholar
  364. 351.
    Schmidt, U., J. Häusler, E. Ohler, und H. Poisel: Bemerkungen zur “Three-step Synthesis of a Gliotoxin Analogue…” von H. C. J. Ottenheijm etal. Chem. Ber. 110, 3722 (1977).Google Scholar
  365. 352.
    Schmidt, IL, und E. Prantz: Doppelbindungsaktivierung in Dehydroaminosäuren: Ein Modell pyridoxalhaltiger Enzyme in Eliminierungs-Additionsreaktionen. Angew. Chem. 89, 345 (1977). Chem. Int. Ed. Engl. 16, 328 (1977).Google Scholar
  366. 353.
    Schöberl, A.: Über die Anlagerung von Sulfhydrylcarbonsäuren an ungesättigte Säuren und über eine neue Synthese von Lanthionin. Chem. Ber. 80, 379 (1947).Google Scholar
  367. 354.
    Schöberl, A., und A. Wagner: Eine neue Synthese von Cystein und Cystin. Natur-wissenschaften 34, 189 (1947).Google Scholar
  368. 355.
    Schöberl, A.: Neue Synthesen schwefelhaltiger Aminosäuren. Angew. Chem. 60A, 308 (1948).Google Scholar
  369. 356.
    Schöberl, A., und A. Wagner: Über eine neue Synthese von Cystathionin. Naturwiss. 37, 113 (1950).Google Scholar
  370. 357.
    Schöberl, A., und G. Täuber: Über die Synthese der optisch aktiven Diastereomeren Cystathionin und Allocystathionin und über Methoden zu deren Trennung. Ann. 599, 23 (1956).Google Scholar
  371. 358.
    Schöberl, A., und A. Wagner: Untersuchungen zur Frage der Lanthionin-Bildung aus Wolle und Cystin. Z. Physiol. Chem. 304, 97 (1956).Google Scholar
  372. 359.
    Schöberl, A., M. Rimpler, und K. H. Magosch: Notiz zur Synthese von D-Cystin und seinen Derivaten. Chem. Ber. 102, 1767 (1969).Google Scholar
  373. 360.
    Schöllkopf, U., F. Gerhart, R. Schröder, und D. Hoppe: ß-Substituierte OE-Formyl- aminoacrylsäureäthylester aus a-metallierten Isocyanessigestern und Carbonylver- bindungen. (Formylaminomethylierung von Carbonylverbindungen.) Liebigs Ann. Chem. 766, 116 (1972).Google Scholar
  374. 361.
    Sen, L. C., E. Gonzalez-Flores, R. E. Feeney, and J. R. Whitaker: Reactions of Phosphoproteins in Alkaline Solutions. J. Agric. Food Chem. 25, 632 (1977); Chem. Abstr. 87, 6361m (1977).Google Scholar
  375. 362.
    Sheehan, J. C., and R. E. Chandler: A Sterically Controlled Synthesis of Amino Acids. J. Amer. Chem. Soc. 83, 4795 (1961).Google Scholar
  376. 363.
    Sheehan, J. C., D. Mania, S. Nakamura, J. A. Stock, and K. Maeda: The Structure of Telomycin. J. Amer. Chem. Soc. 90, 462 (1968).Google Scholar
  377. 364.
    Shemin, D., and R. M. Herbst: The Condensation of a-Keto Acids and Acetamide. J. Amer. Chem. Soc. 60, 1954 (1938).Google Scholar
  378. 365.
    Shiba, T., S. Nomoto, T. Teshima, and T. Wakamiya: Revised Structure and Total Synthesis of Capreomycin. Tetrahedron Letters 1976, 3907.Google Scholar
  379. 366.
    Shin, C., M. Masaki, and M. Ohta: The Synthesis of 3-Isopropylidene-2,5-dioxo- piperazines. Bull. Chem. Soc. Japan 39, 858 (1966).Google Scholar
  380. 367.
    Shin, C., Y. Chigira, M. Masaki, and M. Ohta: Total Synthesis of Albonoursin. Tetrahedron Letters 1967, 4601.Google Scholar
  381. 368.
    Shin, C, M. Masaki, and M. Ohta: The Synthesis of 3-Isopropylidene-2,5-pipera- zinediones. J. Org. Chem. 32, 1860 (1967).Google Scholar
  382. 369.
    Shin, C., Y. Chigira, M. Masaki, and M. Ohta: Synthesis of Albonoursin. Bull. Chem. Soc. Jap. 42, 191 (1969).Google Scholar
  383. 370.
    Shin, C., M. Masaki, and M. Ohta: The Synthesis and Reaction of a,ß-Unsaturated a-Nitrocarboxylic Esters. Bull. Chem. Soc. Japan 43, 3219 (1970).Google Scholar
  384. 371.
    Shin, C., H. Ando, and J. Yoshimura: The Reaction of α-Oxo Acids with N-Phenyl- triphenylphosphinimine. Bull. Chem. Soc. Jap. 44, 474 (1971).Google Scholar
  385. 372.
    Shin, C., M. Fujii, and J. Joshimura: The General Synthesis of 3-Alkylidene-2,5- piperazinediones. Tetrahedron Letters 1971, 2499.Google Scholar
  386. 373.
    Shin, C., M. Masaki, and M. Ohta: The Independent Isolation of a Primary En- amine and the Tautomeric Imine. Bull. Chem. Soc. Jap. 44, 1657 (1971).Google Scholar
  387. 374.
    Shin, C., K. Nanjo, and J. Yoshimura: Cyclisation Reaction of N-(Haloacetyl)- or N-(Phtaloylglycyl)hydroxyaminoacid Esters with Ammonia. Chemistry Letters 1973, 1039.Google Scholar
  388. 375.
    Shin, C., K. Sato, A. Ohtsuka, K. Mikami, and J. Yoshimura: Unsaturated Carboxylic Acid Derivatives. IV. General Synthesis of Unsaturated Un- symmetric 3,6-Disubstituted-2,5-piperazinediones. Bull. Chem. Soc. Japan 46, 3876 (1973)Google Scholar
  389. 376.
    Shin, C., K. Nanjo, and J. Yoshimura: A Facil Synthesis of a,(3-Unsaturated p-Bromo-N-acyl-α-amino Acids. Tetrahedron Letters 1974, 521.Google Scholar
  390. 377.
    Shin, C., K. Nanjo, E. Ando, and J. Yoshimura: a,p-Unsaturated Carboxylic Acid Derivatives VI, New Synthesis of N-Acyl-α-dehydroamino Acid Esters. Bull. Chem. Soc. Japan 47, 3109 (1974).Google Scholar
  391. 378.
    Shin, C., K. Nanjo, T. Nishino, Y. Sato, and J. Yoshimura: A,P-Unsaturated Carboxylic Acid Derivatives. VIII. The Synthesis and Reaction of Esters of N-Acyl- N-bromo-α-dehydroamino Acid. Bull. Chem. Soc. Jap. 48, 2492 (1975).Google Scholar
  392. 379.
    Shin, C., Y. Sato, and J. Yoshimura: a,(3-Unsaturated Carboxylic Acid Derivatives. XI. Convenient Synthesis of tert.-Butyl 2-Alkoxy- and Hydroxy-2-acetylamino-3- mono- or 3,3-dihaloalkanoates. Bull. Chem. Soc. Japan 49, 1909 (1976).Google Scholar
  393. 380.
    Shin, C., Y. Yonezawa, and J. Yoshimura: A General Synthesis of oc,p-Unsaturated α-Amino Acid Ethyl Esters. Chemistry Letters 1976, 1095.Google Scholar
  394. 381.
    Shin, C., M. Hayakawa, K. Mikami, and J. Yoshimura: Synthesis and Configurational Assignments of Albonoursin and Its Three Geometric Isomers. Tetrahedron Letters 1977, 863.Google Scholar
  395. 382.
    Shive, W., and G. W. Shive: The Condensation of Pyruvic Acid and Formamide. J. Amer. Chem. Soc. 68, 117 (1946).Google Scholar
  396. 383.
    Sicher, J., M. Svoboda, and J. Farkas: The Synthesis and Configuration of the Two Racemic (3-Phenylcysteines. Coll. Czech. Chem. Comm. 20, 1439 (1955).Google Scholar
  397. 384.
    Sjòberg, B., H. Thelin, L. Nathorst-Wfstfelt, E. E. Van Tamelen, and E. R. Wagner: On the Role of “Cyclic CysteinylValine” in Penicillin Biosynthesis. Tetrahedron Letters 1965, 281.Google Scholar
  398. 385.
    Slusarchyk, W. A., H. E. Applegate, P. Funke, W. Koster, M. S. Puar, M. Young, and J. E. Dolfini: Synthesis of 6-Methoxythio Penicillins and 7-Heteroatom- Substituted Cephalosporins. J. Org. Chem. 38, 943 (1973).Google Scholar
  399. 386.
    Smale, T. C, and S. Bailey: Insecticidal Amidoacrylate Derivatives. Brit. 1,354,571 (1974); Chem. Abstr. 81, 63353k (1974).Google Scholar
  400. 387.
    Smrt, J., J. Beranek, and J. Sicher: Esters of N-Substituted Ethyleniminecarboxylic Acids. U.S. 2,958,691 (Nov. 1, 1960), Chem. Abstr. 55, 10468Ì (1961).Google Scholar
  401. 388.
    Snow, J. T., J. W. Finley, and M. Friedman: Relative Reactivities of Sulfhydryl Groups with N-Acetyl Dehydroalanine and N-Acetyl Dehydroalanine Methyl Ester. Int. J. Peptide Protein Res. 8, 57 (1976).Google Scholar
  402. 389.
    Snyder, H. R., and J. A. Macdonald: A Synthesis of Tryptophan and Tryptophan Analogs. J. Amer. Chem. Soc. 77, 1257 (1955).Google Scholar
  403. 390.
    Sokolovsky, M., M. Wilchek, and A. Patchornik: The Formation of Dehydroalanine Derivatives from S-DNP Cysteine Peptides. Proc. 30th Meeting of the Israel Chem. Soc. 11A, 79 (1962).Google Scholar
  404. 391.
    Sokolovsky, M., T. Sadeh, and A. Patchornik: Nonenzymatic Cleavages of Peptide Chains at the Cysteine and Serine Residues through their Conversion to Dehydroalanine (DHAL). II. The Specific Chemical Cleavage of Cysteinyl Peptides. J. Amer. Chem. Soc. 86, 1212 (1964).Google Scholar
  405. 392.
    Spitzer, W. A., and T. Goodson: The Synthesis of S-Methyl and O-Methyl β- Lactam Antibiotics. Tetrahedron Letters 1973, 273.Google Scholar
  406. 393.
    Srinivasan, A., K. D. Richards, and R. K. Olsen: Comments on Assignment of Stereochemistry to 2-Acylaminocrotonates. Tetrahedron Letters 1976, 891.Google Scholar
  407. 394.
    Srinivasan, A., R. W. Stephenson, and R. K. Olsen: Synthesis of Dehydroalanine Peptides from P-Chloroalanine Peptide Derivatives. J. Org. Chem. 42, 2253 (1977).Google Scholar
  408. 395.
    Srinivasan, A., R. W. Stephenson, and R. K. Olsen: Conversion of Threonine Derivatives to Dehydroamino Acids by Elimination of ß-Chloro and O-Tosyl Derivatives. J. Org. Chem. 42, 2256 (1977).Google Scholar
  409. 396.
    Steglich, W., und R. Hurnaus: Über den Verlauf der Bergmannschen Azlakton- synthese, 2-Alkyliden-pseudo-oxazolone-(5). Tetrahedron Letters 1966, 383.Google Scholar
  410. 397.
    Steglich, W., H. Tanner, und R. Hurnaus: 2-Dichlormethylen-pseudooxazolone- (5). Chem. Ber. 100, 1824 (1967).Google Scholar
  411. 398.
    Steglich, W.: Fortschritte in der Chemie der Oxazolinone-(5). In: Fortschritte chem. Forsch. Bd. 12/1, p. 77. BerLin-Heidelberg-New York: Springer. 1970.Google Scholar
  412. 399.
    Strunz, G. M., and M. Kakushima: Total Synthesis of (+)-Hyalodendrin. Experientia 30, 719 (1974).Google Scholar
  413. 400.
    Sugimura, Y.. K. Iino, Y. Iwano. T. Saito, and T. Hiraoka: A Novel Synthesis of 7-Methoxycephalosporins and 6-MethoxyPenicillins. Tetrahedron Letters 1976, 1307.Google Scholar
  414. 401.
    Süs, O.: Über die Anlagerung von Schwefelverbindungen an die ß,ß-Dimethylacryl- säure. — Synthesen der ß,ß-Dimethyl-oc-aminopropionsäure, dl-Penicillamin. Ann. 559, 92 (1948).Google Scholar
  415. 402.
    Süs, O.:Synthetische Versuche in der Penicillinreihe V. Versuche zum Aufbau von Zwi-schenprodukten der Biosynthese bei dem Penicillin G. Ann. 569, 153 (1950).Google Scholar
  416. 403.
    Süs, O.: α-Amino-ß,ß-dimethyl-ß-(arylmethylthio)propionic Acids. Ger 831,997 (1952). Chem. Abstr. 47, 2201 (1953).Google Scholar
  417. 404.
    Süs, O.:Aliphatic Amino Thio Carboxylic Acids. Ger 831, 998 (1952). Chem. Abstr. 47, 6978 (1953).Google Scholar
  418. 405.
    Sutherland, J. K.: The Proton-Magnetic-Resonance Spectrum of Pencolide. Biochem. J. 86, 243 (1963).Google Scholar
  419. 406.
    Swan, J. M.: Thiols, Disulphides and Thiosulphates: Some New Reactions and Possibilities in Peptide and Protein Chemistry. Nature 1957, 643.Google Scholar
  420. 407.
    Swan, J. M.:Mechanism of Alkaline Degradation of Cystine Residues in Proteins. Nature 179, 965 (1957).Google Scholar
  421. 408.
    Takaishi, N., H. Imai, C. A. Bertelo, and J. K. Stille: Transition Metal Catalyzed Asymmetric Organic Syntheses via Polymer Bound Chiral Ligands. Synthesis of R Amino Acids and Hydratropic Acid by Hydrogenation. J. Amer. Chem. Soc. 98, 5400 (1976).Google Scholar
  422. 408A.
    Takita, Y., Y. Muraoka, T. Yoshioka, A. Fujii, K. Maeda, and H. Umezawa: Chemistry of Bleomycin. IX. Structures of Bleomycin and Phleomycin. J. Antibiot. 25, 755 (1972).Google Scholar
  423. 409.
    Tanaka, M., and J. Ogata: Asymmetric Hydrogenation by a Chiral Diphosphinite Rhodium Complex. J. Chem. Soc. Chem. Comm. 1975, 735.Google Scholar
  424. 410.
    Tatsuoka, S., M. Murakami, and T. Tamura: Reactions of ß-Hydroxyvaline and Related Compounds. J. Pharm. Soc. Jap. 70, 230 (1950).Google Scholar
  425. 411.
    Teshima, T., S. Nomoto, T. Wakamiya, and T. Shiba: Chemical Studies on Tuber- actinomycins. X. Total Synthesis of Tuberactinomycin O. Tetrahedron Letters 1976, 2343.Google Scholar
  426. 412.
    Testa, B., and P. Jenner: Oxidation of Nitrogen-Containing Functional Groups. In: “Drug Metabolism. Chemical and Biochemical Aspects”, p. 61ff. Marcel Dekker Inc., 1976.Google Scholar
  427. 413.
    Theodoropoulos, D., I. L. Schwartz, and R. Walter: Synthesis of Selenium- Containing Peptides. Biochemistry 6, 3927 (1967).Google Scholar
  428. 414.
    Tolosa, E. A., R. N. Maslowa, E. V. Goryachenkowa, I. H. Willhardt, and A. E. Braunstein: Isotopic Hydrogen Exchange in Reactions Catalysed by Cysteine Lyase and Serine Sulphhydrase. Eur. J. Biochem. 53, 429 (1975).Google Scholar
  429. 415.
    Tori, K., K. Tokura, K. Okabe, M. Ebata, H. Otsuka, and G. Lukacs: Carbon-13 NMR Studies of Peptide Antibiotics, Thiostrepton and Siomycin A: The Structure and Relationship. Tetrahedron Letters 1976, 185.Google Scholar
  430. 416.
    Trown, P. W.: Antiviral Activity of N,N’-Dimethyl-3,6-epidithiopiperazine-2,5- dione. A Synthetic Compound Related to the Gliotoxins, LL S88a and ß-Chetomin, and the Sporidesmins. Biochem. Biophys. Res. Commun. 33, 402 (1968).Google Scholar
  431. 417.
    Tshamann, E. S., and M. M. Shemjakin: oc-Substituted a-Amino Acids Series. I. Synthesis and Properties of the Simplest a-Hydroxy-α-acylamino Carboxylic Acids. Zhur. Obschei Khim. 25, 1360 (1955); Chem. Abstr. 50, 4913 (1956).Google Scholar
  432. 418.
    Ueno, T., T. Nakashima, Y. Hayashi, and H. Fukami: Isolation and Structure of AM-Toxin III, a Host-specific Phytotoxic Metabolite Produced by Alternaria Mali. Agric. Biol. Chem. 39, 1115, 2081 (1975).Google Scholar
  433. 419.
    Ugi, I., und U. Fetzer: Isonitrile III. Die Addition von Carbonsäurechloriden an Isonitrile. Chem. Ber. 94, 1116 (1961).Google Scholar
  434. 419A.
    Umezawa, H.: Natural and Artificial Bleomycins: Chemistry and Antitumor Activities. Pure and Applied Chem. 28, 665 (1971).Google Scholar
  435. 420.
    Wakamiya, T., T. Shiba, T. Kaneko, H. Sakakibara, and T. Take: Chemical Studies on Tuberactinomycin. I. Structure of Tuberactidine, Guanidino Amino Acid Component. Tetrahedron Letters 1970, 3497.Google Scholar
  436. 421.
    Wakamiya, T., T. Shiba, T. Kaneko, Y. Yoshioka, T. Aoki, K. Nakatsu, T. Nöda, T. Take, A. Nagata, and J. Abe: The Chemical Structures of Tuberactinomycines. 15th Symposium on the Chemistry of Natural Products, p. 16. Nagoya 1971.Google Scholar
  437. 422.
    Wakamiya, T., T. Shiba, and T. Kaneko: Chemical Studies on Tuberactinomycin. IV. Chemical Structure of y-Hydroxy-ß-ly sine. Bull. Chem. Soc. Japan 45, 3668 (1972).Google Scholar
  438. 423.
    Wakamiya, T., T. Shiba, T. Kaneko, H. Sakakibara, T. Nöda, and T. Take: Chemical Studies on Tuberactinomycin. V. Structures of Guanidino Amino Acids. Bull. Chem. Soc. Japan 46, 949 (1973).Google Scholar
  439. 424.
    Wakamiya, T., and T. Shiba: Chemical Studies on Tuberactinomycin. VI. — The Absolute Configuration of y-Hydroxy-ß-lysine in Tuberactinomycins A and N. J. Antibiot. 27,900(1974).Google Scholar
  440. 425.
    Wakamiya, T., T. Teshima, I. Kubota, T. Shiba, and T. Kaneko: Chemical Studies on Tuberactinomycin. VII. Synthesis of y-Hydroxy-ß-lysine. Bull. Chem. Soc. Japan 47, 2292 (1974).Google Scholar
  441. 426.
    Wakamiya, T., and T. Shiba: Chemical Studies on Tuberactinomycin. VIII. Isolation of Tuberactinomycin N and Conversion of Tuberactinomycin N to O. J. Antibiot. (Tokyo) 28, 292 (1975).Google Scholar
  442. 427.
    Wakamiya, T., and T. Shiba:Chemical Studies on Tuberactinomycin. IX. Nuclear Magnetic Resonance Studies on Tuberactinomycins and Tuberactinamin N. Bull. Chem. Soc. Japan 48, 2502 (1975).Google Scholar
  443. 427A.
    Walker, J., A. Olesker, L. Valente, R. Rabanal and G. Lucacs: Total Structure of the Polythiazole-containing Antibiotic Micrococcin P. A 13C Nuclear Magnetic Resonance Study. J. Chem. Soc., Chem. Commun. 1978, 256.Google Scholar
  444. 428.
    Walter, R., and J. Roy: Selenomethionine, a Potential Catalytic Antioxidant in Biological Systems. J. Org. Chem. 36, 2561 (1971).Google Scholar
  445. 429.
    Warnhoff, E. W.: Peptide Alkaloids. In: Fortschritte der Chemie organischer Naturstoffe (W. Herz, H. Grisebach, A. I. Scott, eds.), Vol. 28, p. 162. Wien- New York: Springer. 1970.Google Scholar
  446. 430.
    Weiner, W., W. N. White, D. G. Hoare, and D. E. Koshland, Jr.: The Formation of Anhydrochymotrypsin by Removing the Elements of Water from the Serine at the Active Site. J. Amer. Chem. Soc. 88, 3851 (1966).Google Scholar
  447. 431.
    Weinstein, B., K. G. Watrin, H. J. Loie, and J. C. Martin: Amino Acids and Peptides. 44. Synthesis of DL-y-CarboxygluTamic Acid, a New Amino Acid. J. Org. Chem. 41, 3634 (1976). 21Google Scholar
  448. 432.
    Weygand, F., W. Steglich, und H. Tanner: Eine neue Methode zur Umwandlung von cx-Aminosäuren in a-Ketosäuren. Liebigs Ann. 658, 128 (1962).Google Scholar
  449. 433.
    Weygand, F., W. Steglich, D. Mayer, und W. VON Phillipsborn: 2-Trifluormethyl- pseudooxazolone-(5). Chem. Ber. 97, 2023 (1964).Google Scholar
  450. 434.
    Wickner, R. B.: Dehydroalanine in Histidine Ammonia Lyase. J. Biol. Chem. 244, 6550 (1969).Google Scholar
  451. 435.
    Wieland, T., G. Ohnacker, und W. Ziegler: Aminosäuresynthesen mit a-Acylamino- acrylestern. Chem. Ber. 90, 194 (1957).Google Scholar
  452. 436.
    Wieland, T., K. H. Shin, und B. Heinke: Synthese einiger Pyruvoylaminosäuren nach der Phsophoroxychlorid-Methode. Chem. Ber. 91, 483 (1958).Google Scholar
  453. 437.
    Wohl, A., und L. H. Lips: Über Amide der Brenztraubensäure. Ber. 40, 2313 (1907).Google Scholar
  454. 438.
    Woodard, J. C., D. D. Short, C. E. Strattan, and J. H. Duncan: Synthesis and Properties of NE-(DL-2-Amino-2-carboxyethyl)-L-lysine, Lysinoalanine. Food. Cos- met. Toxicol. 15, 109 (1977); Chem. Abstr. 87, 68619k (1977).Google Scholar
  455. 439.
    Wolfe, S., R. N. Bassett, S. M. Caldwell, and F. I. Wasson: Reversal of the Anhydro Penicillin Rearrangement. J. Amer. Chem. Soc. 91, 7205 (1969).Google Scholar
  456. 440.
    Yamazaki, M., K. Sasago, and K. Miyaki: The Structure of Fumitremorgin B (FTB), a Tremorgenic Toxin from Aspergillus fumigatus Fres. J. Chem. Soc. Chem. Commun. 1974, 408.Google Scholar
  457. 441.
    Yanagisawa, H., M. Fukushima, A. Ando, and H. Nakao: A Novel General Method for Synthesizing 7a-Methoxycephalosporins. Tetrahedron Letters 1975, 2705.Google Scholar
  458. 442.
    A Novel Simple Synthesis of 7a-Substituted Cephalosporins. Tetrahedron Letters 1976, 259.Google Scholar
  459. 443.
    Yoshimoto, M., S. Ishihara, E. Nakayama, E. Shoji, H. Kuwano, and N. Soma: Studies on ß-Lactam Antibiotics II. A New Synthesis of 1,2-SecoPenicillin and its Conversion to the Cephem Nucleus. Tetrahedron Letters 1972, 4387.Google Scholar
  460. 444.
    Yoshimura, J., Y. Sugiyama, K. Matsunari, and H. Nakamura: Addition of Methanesulfenyl Chloride and Sulfur Chloride to l,4-Dimethyl-3,6-dimethylene-2,5- piperazinedione and Substitution of the Adducts. Bull. Chem. Soc. Jap. 47, 1215 (1974).Google Scholar
  461. 445.
    Yoshimura, J., H. Nakamura, and K. Matsunari: Synthesis of 3,6-Dialkyl-l,4- dimethyl-3,6-epithio- and -3,6-epidithio-2,5-piperazinediones. Bull. Chem. Soc. Jap. 48, 605 (1975).Google Scholar
  462. 446.
    Yoshioka, H., T. Aoki, H. Goko, K. Nagatsu, T. Nöda, H. Sakakibara, T. Take, A. Nagata, J. Abe, T. Wakamiya, T. Shiba, and T. Kaneko: Chemical Studies on Tuberactinomycin. II. The Structure of Tuberactinomycin O. Tetrahedron Letters 1971, 2043.Google Scholar
  463. 447.
    Zervas, L., und I. Photaki: Über Cystein- und Cystinpeptide. Chimia 14, 375 (1960).Google Scholar
  464. 448.
    Zervas, L., und N. Ferderigos: Umwandlung von Cysteinylserin in Lanthionin. Experientia 29, 262 (1973).Google Scholar
  465. 449.
    ervas, L., und N. Ferderigos: On Lanthionine and Cyclolanthionyl. Israel J. Chem. 12, 139 (1974).Google Scholar
  466. 450.
    Zioudrou, C., M. Wilchek, and A. Patchornik: Conversion of the L-Serine Residue to an L-Cysteine Residue in Peptides. Biochemistry 1965, 1811.Google Scholar
  467. 451.
    Zoller, U., and D. Ben-Ishai: Amidoalkylation of Mercaptans with Glyoxylic Acid Derivatives. Tetrahedron 31, 863 (1975).Google Scholar
  468. 452.
    Shimohigashi, Y., S. Lee, T. Kato, and N. Izumiya: Synthesis of Cyclotetradepsi- peptides, AM-Toxin II and Its Analog. Chemistry Letters 1977, 1411.Google Scholar
  469. 453.
    Shimohigashi, Y., S. Lee, T. Kato, N. Izumiya, T. Ueno, and H. Fukami: Synthesis and Necrotic Activity of Dihydro-AM-toxin I. Agric. Biol. Chem. 41, 1533 (1977). 322Google Scholar
  470. 454.
    Shimohigashi, Y., S. Lee, H. Aoyagi, T. Kato, and N. Izumiya: Cyclic Peptides. I. Synthesis of AM-Toxin Analog Containing O-Methyl-L-tyrosine. Int. J. Pept. Protein Res. 1977, 197.Google Scholar
  471. 454A.
    Shimohigashi, Y., S. Lee, H. Aoyagi, T. Kato, and N. Izumiya:Cyclic Peptides. Part 3. Synthesis of AM-Toxin I. Int. J. Pept. Protein Res. 1977, 323.Google Scholar
  472. 455.
    Shimohigashi, Y., S. Lee, T. Kato, and N. Izumiya: Cyclic Peptides. IV. Synthesis of Diastereomeric Dihydro-AM-toxin I and Its Analogs. Bull. Chem. Soc. Japan 51, 584 (1978).Google Scholar
  473. 456.
    Ueno, T., T. Nakashima, M. Uemoto, H. Fukami, S. Lee, and N. Izumiya: Mass Spec-trometry of Alternaria Mali Toxins and Related Cyclodepsipeptides. Biomed. Mass Spectrom. 1977, 134.Google Scholar
  474. 457.
    Nomoto, S., T. Teshima, T. Wakamiya, and T. Shiba: The Revised Structure of Capreomycin. J. Antibiot. 1977, 955.Google Scholar
  475. 458.
    Nomoto, S., T. Teshima, T. Wakamiya, and T. Shiba:Total Synthesis of Capreomycin. Tetrahedron 34, 921 (1978).Google Scholar
  476. 459.
    Pallai, P., T. Wakamiya, and E. Grooss: Studies on the Synthesis and Biology of Nisin: Ring A. Pept., Proc. A.. Pept. Symp., 5th. 1977, 205.Google Scholar
  477. 460.
    Rich, D. H., and P. K. Bhatnagar: Isolation and Conformational Analysis of Two Conformers of p-Methylalanine1-tentoxin. J. Amer. Chem. Soc. 100, 2218 (1978).Google Scholar
  478. 461.
    Rich, D. H., and P. K. Bhatnagar: Conformational Studies of Tentoxin by Nuclear Magnetic Resonance Spectroscopy. Evidence for a New Conformation For a Cyclic Tetrapeptide. J. Amer. Chem. Soc. 100, 2212 (1978).Google Scholar
  479. 462.
    Rich, D. H., P. Bhatnagar, P. Mathiaparanam, J. A. Grant, and J. P. Tam: Synthesis of Tentoxin and Related Dehydro Cyclic Tetrapeptides. J. Org. Chem. 43, 296 (1978).Google Scholar
  480. 463.
    Wakamiya, T., T. Teshima, H. Sakakibara, K. Fukukawa, and T. Shiba: Chemical Studies on Tuberactinomycin. XI. Semisyntheses of Tuberactinomycin Analogs with Various Amino Acids in the Branched Part. Bull. Chem. Soc. Japan 50, 1984 (1977).Google Scholar
  481. 464.
    Teshima, T., S. Nomoto, T. Wakamiya, and T. Shiba: Chemical Studies on Tuber-actinomycin. XII. Syntheses and Antimicrobial Activities of [Ala3, Ala4]-, [Ala3]-, and [Ala4]-Tuberactinomycin O. Bull. Chem. Soc. Japan 50, 3372 (1977).Google Scholar
  482. 465.
    Nomoto, S., and T. Shiba: Chemical Studies on Tuberactinomycin. XIII. Modification of (3-Ureidodehydroalanine Residue in Tuberactinomycin N. J. Antibiot. 1977, 1008.Google Scholar
  483. 466.
    Teshima, T., S. Nomoto, T. Wakamiya, and T. Shiba: Chemical Studies on Tuber-actinomycin. XV. Total Synthesis of Tuberactinomycin O. J. Antibiot. 1977, 1073.Google Scholar
  484. 467.
    Konishi, M., K. Saito, K. Numata, T. Tsuno, K. Asama, H. Tsukiura, T. Naito, and H. Kawaguchi: Tallysomycin, a New Antitumor Complex Related to Bleomycin. II. Structure Determination of Tallysomycin. J. Antibiot. 1977, 789.Google Scholar
  485. 468.
    Ferezou, J. P., C. Riche, A. Quesneau-Thierry, C. Pascard-Billy, M. Barbier, J. F. Bousquet, and G. Boudart: Structures of Two Toxins Isolated from Cultures of the Fungus Phoma Lingam Tode: Sirodesmin PL and Deacetylsirodesmin PL. Nouv. J. Chim. 1977, 327.Google Scholar
  486. 469.
    Mcgowan, D. A., U. Jordis, D. K. Minster, and S. M. Hecht: A Biomimetic Synthesis of the Bisthiazole Moiety of Bleomycin. J. Amer. Chem. Soc. 99, 8078 (1977).Google Scholar
  487. 470.
    Bycroft, B. W., and M. S. Gowland: The Structures of the Highly Modified Peptide Antibiotics Micrococcin Pi and P2. J. Chem. Soc. Chem. Comm. 1978, 256.Google Scholar
  488. 471.
    Bycroft, B. W.: Configurational and Conformational Studies on the Group A Peptide Antibiotics of the Mikamycin (Streptogramin, Virginiamycin) Family. J. Chem. Soc., Perkin 1 1977, 2464.Google Scholar
  489. 472.
    Rich, D., and J. P. Tam: Synthesis of Dehydro Amino Acids and Peptides by Dehydrosulfenation. Rate Enhancement Using Sulfenic Acid Trapping Agents. J. Org. Chem. 42, 3815 (1977).Google Scholar
  490. 473.
    Shin, C., M. Hayakawa, T. Suzuki, A. Ohtsuka, and J. Yoshimura: α,(β-Unsaturated Carboxylic Acid Derivatives. XIII. The Synthesis and Configuration of Alkyl 2-Acyl-amino-2-alkenoates and Their Cyclized 2,5-Piperazinedione Derivatives. Bull. Chem. Soc. Japan 51, 550 (1978).Google Scholar
  491. 474.
    Saito, T., and T. Hiraoka: Reactions of Iminophosphoranes of a-Amino Acid Derivatives with Dimethyl Acetylendicarboxylate. An Application to a Synthesis of 7α-Methoxycephalosporins. Chem. Pharm. Bull. 25, 1645 (1977).Google Scholar
  492. 475.
    Taylor, A. W., and G. Burton: Formation and 6a-Substitution of 6P-(2-Carboxy)- ketenimino Penicillins. Tetrahedron Letters 1977, 3831.Google Scholar
  493. 476.
    Tajima, K.: Autoxidation of 4H-5-Oxazolone. Chemistry Letters 1977, 279.Google Scholar
  494. 477.
    Horikawa, H., T. Iwasaki, K. Matsumoto, and M. Miyoshi: Electrochemical Synthesis of N-Acetyl-2,3-substituted Pyrroles. J. Org. Chem. 43, 335 (1978).Google Scholar
  495. 478.
    Ogura, K., N. Katoh, I. Yoshimura, and G. Tsuchihashi: New Synthesis of a-Keto Acid Derivatives From Nitriles Using Methyl Methylthiomethyl Sulfoxide. Tetrahedron Letters 1978, 375.Google Scholar
  496. 479.
    Matthies, D., und E. D. Setiakusuma: Reaktionen mit Arylglyoxal-thiocarbonsaure- amid. Arch. Pharm. (Weinheim) 310, 996 (1977).Google Scholar
  497. 480.
    Matthies, D.: Herstellung und Umsetzung von N-Acyl-a-chloroglycinen. Synthesis 1978, 53.Google Scholar
  498. 481.
    Sen, P. K., C. J. Veal, and D. W. Young: Photochemical Synthesis of a Novel β-Lactam. J. Chem. Soc. Chem. Comm. 1977, 678.Google Scholar
  499. 482.
    Izumiya, N., S. Lee, T. Kanmera, and H. Aoyagi: Asymmetric Hydrogenation of a,β-Dehydroamino Acid Residue in Cyclic Dipeptides. J. Amer. Chem. Soc. 99, 8346 (1977).Google Scholar
  500. 483.
    Pieroni, O., D. Bacciola, A. Fissi, R. A. Felicioli, and E. Balestreri: Asymmetric Hydrogenation of Unsaturated Peptides. Int. J. Peptide Protein Res. 10, 107 (1977).Google Scholar
  501. 484.
    Pieroni, O., A. Fissi, S. Merlino, and F. Ciardelli: Chiroptical Properties and Con-formation of Dehydrophenylalanine Peptides. Isr. J. Chem. 15, 22 (1976/77).Google Scholar
  502. 485.
    Pieroni, O., A. Fissi, and G. Montagnioli: Unsaturated Amino Acid Residues as Probes for the Conformation of Polypeptides in Solution. Biopolymers 16, 1677 (1977).Google Scholar
  503. 486.
    Glaser, R., M. Twaik, S. Geresh, and J. Blumenfeld: Structural Requirements in Chiral Diphosphine-Rhodium Complexes. VIII. Asymmetric Hydrogenation of N- Acetyldehydroamino Acids with Rhodium(I) Complexes Containing Chiral Carboxylic Analogues of DIOP. Tetrahedron Letters 1977, 4635.Google Scholar
  504. 487.
    Glaser, R., J. Blumenfeld, and M. Twaik: Structural Requirements in Chiral Diphosphine-Rhodium Complexes. X. Asymmetric Hydrogenation of Z-N-Acetyl- dehydroamino Acids and Esters with (\R,2R)-Trans-\,2-bis (diphenylphosphinome- thyl)cyclobutane/Rhodium(I) Complexes. Tetrahedron Letters 1977, 4639.Google Scholar
  505. 488.
    Pracejus, G., and H. Pracejus: Chiral Amino and Diamino Phosphines as Ligands for Asymmetric Hydrogenation Catalysts. Tetrahedron Letters 1977, 3497.Google Scholar
  506. 489.
    Masuda, T., and J. K. Stille: Transition Metal Catalyzed Asymmetric Organic Syntheses via Polymer-Attached Optically Active Phosphine Ligands. Synthesis of R-Amino Acids by Hydrogenation with a Polymer Catalyst Containing Optically Active Alcohol Sites. J. Amer. Chem. Soc. 100, 268 (1978).Google Scholar
  507. 490.
    Takaishi, N., H. Imai, C. A. Bertelo, and J. K. Stille: Transition Metal Catalyzed Asymmetric Organic Syntheses via Polymer-Attached Optically Active Phosphine Ligands. Synthesis of R-Amino Acids and Hydratropic Acid by Hydrogenation. J. Amer. Chem. Soc. 100, 264 (1978).Google Scholar
  508. 491.
    Baxter, A. J. G., and A. B. Holmes: Synthetic Studies in the Piperidine Alkaloid Field. Part 1. The 2-Azabicyclo[2.2.2]octan-5-one Approach to Prosopine. J. Chem. Soc., Perkin I 1977, 2343.Google Scholar
  509. 492.
    Krow, G. R., C. Johnson, and M. Boyle: Heterodienophiles. Part 9. On the Preference For Exo-Orientation in Aldimine Cycloadditions. Tetrahedron Letters 1978, 1971.Google Scholar
  510. 493.
    Fryzuk, M. D., and B. Bosnich: Asymmetric Synthesis. An Asymmetric Homogeneous Hydrogenation Catalyst Which Breeds Its Own Chirality. J. Amer. Chem. Soc. 100, 5491 (1978).Google Scholar
  511. 494.
    Hensens, O. D., and G. Albers-Schonberg: Total Structure of the Peptide Antibiotic Components of Thiopeptin by XH and 13C-NMR Spectroscopy. Tetrahedron Letters 1978, 3649.Google Scholar
  512. 495.
    Olesker, A., L. Valente, L. Barata, G. Lukacs, W. E. Hull, K. Tori, K. Tokura, K. Okabe, M. Ebata, and H. Otsuka: Natural Abundance 15N Nuclear Magnetic Resonance Spectroscopic Evidence For the Structural Relationship Between The Peptide Antibiotics Thiostrepton and Siomycin A. J. Chem. Soc. Chem. Comm. 1978, 577.Google Scholar
  513. 496.
    Michel, K. H., M. O. Chaney, N. D. Jones, M. M. Hoehn, and R. Nagarajan: Epipolythiopiperazinedione Antibiotics From Penicillium Turbatum. J. Antibiot. 27, 57 (1974).Google Scholar
  514. 496A.
    Minster, D. K., U. Jordis, D. L. Evans, and S. M. Hecht: Thiazoles From Cysteinyl Peptides. J. Org. Chem. 43, 1624 (1978).Google Scholar
  515. 497.
    Brewer, D., A. G. Mcinnes, D. G. Smith, A. Taylor, J. A. Walter, H. R. Loosli, and Z. L. Kis: Sporidesmins. Part 16. The Structure of Chaetomin, A Toxic Metabolite of Chaetomium Cochlides, By Nitrogen-15 and Carbon-13 Nuclear Magnetic Resonance Spectroscopy. J. Chem. Soc., Perkin I 1978, 1248.Google Scholar
  516. 498.
    Abe, H., T. Takaishi, T. Okuda, K. Aoe, and T. Date: Methanolysis Products of Sulfomycin I. Tetrahedron Letters 1978, 2791.Google Scholar
  517. 499.
    Konno, S., and C. H. Stammer: A New Dehydropeptide Synthesis. Direct Oxidation of a Dipeptide Azlactone. Synthesis 1978, 598.Google Scholar
  518. 500.
    Barrett, G. C., L. A. Chowdhury, and A. A. Usmani: Formation of “Dehydropeptides” from Peptides. A Model System Establishing a Mechanism For the Biogenesis of Peptide Amides and a-Keto Acids. Tetrahedron Letters 1978, 2063.Google Scholar
  519. 501.
    Wojciechowska, H., R. Pawlowicz, R. Andruszkiewicz, J. Grzybowska: Conversion of Protected Serine and Threonine to Corresponding Dehydroamino Acids Under Mild Conditions. Tetrahedron Letters 1978, 4063.Google Scholar
  520. 502.
    Watanabe, K., und H. Klostermeyer: Bildung von Dehydroalanin, Lanthionin und Lysinoalanin beim Erhitzen von (3-Lactoglobulin A. Z. Lebensm. Unters. Forsch. 164, 77 (1977).Google Scholar
  521. 503.
    Suzuki, M., K. Nunami, and N. Yonedy: Synthesis of Cycloalk-l-enylglycines. J. Chem. Soc. Chem. Comm. 1978, 270.Google Scholar
  522. 504.
    Tatsumoto, K., and A. E. Martell: Catalysis of the P-Elimination of O-Phospho- serine and (3-Chloroalanine by Pyridoxal and Zink(II) Ion. J. Amer. Chem. Soc. 99, 6082 (1977).Google Scholar
  523. 505.
    Tatsumoto, K., and A. E. Martell: Reaction Kinetics of the Metal Ion Catalyzed (3-Phenylserine-Pyridoxal Model System. J. Amer. Chem. Soc. 100, 5549 (1978).Google Scholar
  524. 506.
    Keith, D. D., R. Yang, J. A. Tortora, and M. Weigele: Synthesis of DL-2-Amino- 4-(2-aminoethoxy)-/rflwj-but-3-enoic Acid. J. Org. Chem. 43, 3713 (1978).Google Scholar
  525. 507.
    Greenlee, W. J., D. Taub, and A. A. Patchett: A General Synthesis of a-Vinyl- a-amino Acids. Tetrahedron Letters 1978, 3999.Google Scholar
  526. 508.
    Kolasa, T., and A. Chimiak: Unambiguous Synthesis of N-Hydroxypeptides. Tetrahedron 33, 3285 (1977).Google Scholar
  527. 509.
    Cama, L. D., and B. G. Christensen: Total Synthesis of (3-Lactam Antibiotics IX. (±)-1 -OxabisnorPenicillin G. Tetrahedron Letters 1978, 4233.Google Scholar
  528. 510.
    Conway, T. T., G. Lim, J. L. Douglas, M. Menard, T. W. Doyle, P. Rivest, D. Horning, L. R. Morris, and D. Cimon: Nuclear Analogs of [β-Lactam Antibiotics. VIII. Synthesis of 3-Acetoxymethyl-A3-0-2-isocephems. Canad. J. Chem. 56, 1335 (1978).Google Scholar
  529. 511.
    Schouteeten, A., Y. Christidiet G. Mattioda: Les N-acylhémiaminals de l’acide glyoxylique et leur utilisation en synthèse. Bull. Soc. Chim. France 1978, 248.Google Scholar
  530. 512.
    Achiwa, K.: Homogeneous Catalytic Asymmetric Hydrogénation of (Z)-2-Aceta- mido-3-methyl-fumaric Acid Ester, a Tetrasubstituted Olefin. Tetrahedron Letters 1978, 2583.Google Scholar
  531. 513.
    Brown, J. M., and P. A. Chaloner: The Mechanism of Asymmetric Hydrogénation Catalyzed by Rhodium ( I) DIPAMP-Complexes. Tetrahedron Letters 1978, 1877.Google Scholar
  532. 514.
    Brown, J. M., and P. A. Chaloner: Mechanism of Asymmetric Hydrogénation Catalysed by Rhodium(I) ¿ra/w-4,5-Bis-(diphenylphosphinomethyl)-2,2-dimethyldi- oxolan (DIOP) Complexes. J. Chem. Soc. Chem. Comm. 1978, 321.Google Scholar
  533. 515.
    i 11 I N. W. R.. and Y. Sugi: Asymmetric Hydrogénation Catalyzed by Diphosphate Rhodium Complexes Derived From A Sugar. Tetrahedron Letters 1978, 1635.Google Scholar
  534. 516.
    Fiorini, M., G. M. Giongo, F. Marcati, and W. Marconi: Asymmetric Hydrogénation by Chiral Aminophosphine-Rhodium Complexes. J. Molecular Catal. 1, 451 (1976).Google Scholar
  535. 517.
    Glaser, R.: Prediction of Chirality of Major Product by Models of DIOP-Rhodium ( I) Complexes For Asymmetric Hydrogénation and Hydrosilylation. Tetrahedron Letters 1975, 2127.Google Scholar
  536. 518.
    Glaser, R., S. Geresh, and J. Blumenfeld: Structural Requirements in Chiral Diphosphine-Rhodium Complexes. III. Small Scale Method For Fresh Preparation of Cationic DIOP-Rhodium Complexes and Comparison with Neutral DIOP-Rhodium Complexes. J. Organomet. Chem. 112, 355 (1976).Google Scholar
  537. 519.
    Cullen, W. R., and E-Shan YEH: Asymmetric Hydrogénation Using Ferrocenyl- phosphine Rhodium® Cationic Complexes. J. Organomet. 139, C13 (1977).Google Scholar
  538. 520.
    Glaser, R., and M. Twaik: Structural Requirements in Chiral Diphosphine-Rhodium Complexes. II. NMR-Determination of E-Z-Geometry in Prochiral Substrates Used in Asymmetric Hydrogénation Reactions. α-AceTamidocinnamic Acids, Esters and Parent Azlactones. Tetrahedron Letters 1976, 1219.Google Scholar
  539. 521.
    Glaser, R., S. Geresh, J. Blumenfeld, and M. Twaik: Structural Requirements in Chiral Diphosphine-Rhodium Complexes. XI. Asymmetric Homogeneous Hydrogénation of Z-α-Acylaminocinnamic Acids and Esters with (lS,2S)-trans-l,2-Bis- (diphenylphosphinomethyl) Cyclohexane/Rhodium (I) Complexes. Tetrahedron 34, 2405 (1978).Google Scholar
  540. 522.
    Grubbs, R. H., and R. A. Devries: Asymmetric Hydrogénation By an Atropisomeric Diphosphinite Rhodium Complex. Tetrahedron Letters 1977, 1879.Google Scholar
  541. 523.
    Hanaki, K., K. Kashiwabara, and J. Fujita: Asymmetric Hydrogénation of α- Acylaminoacrylic Acids by the Rhodium(I) Complex of (li?,2.K)-Bis(N-diphenyl- phosphinomethylamino)-cyclohexane. Chemistry Letters 1978, 489.Google Scholar
  542. 524.
    James, B. R., D. K. W. Wang, and R. F. Voigt: Catalytic Asymmetric Hydrogénation Using Ruthenium(II) Chiral Phosphine Complexes. J. Chem. Soc. Chem. Comm. 1975, 574.Google Scholar
  543. 525.
    James, B. R., R. S. Macmillan, and K. J. Reimer: Catalytic Asymmetric Synthesis Using Ruthenium Complexes Containing Sulfoxide Ligands. J. Mol. Catal. 1, 439 (1975/76).Google Scholar
  544. 526.
    Morrison, J. D., W. F. Masler, and M. K. Neuberg: Asymmetric Homogeneous Hydrogénation. Adv. Catal. 25, 81 (1976).Google Scholar
  545. 527.
    Tamao. K.. H. Yamamoto. H. Matsumoto, N. Miyake, T. Hayashi, and M. Kumada: Optically Active 2.2’-Bis-(diphenylphosphinomethyl)-l,r-binaphthyl: A New Chiral Bidentate Phosphine Ligand For Transition-Metal Complex Catalyzed Asymmetric Reactions. Tetrahedron Letters 1977, 1389.Google Scholar
  546. 528.
    Vilim, J., and J. Hetflejs: Kinetics of Enantioselective Hydrogénation of α-Acetyl- aminocinnamic Acid Catalysed by A Rhodium Complex. Coll. Czech. Chem. Comm. 43, 122 (1978).Google Scholar
  547. 529.
    Vineyard, B. D., W. S. Knowles, M. J. Sabacky, G. L. Bachman, and D. J. Wein- Kauff: Asymmetric Hydrogénation. Rhodium Chiral Bisphosphine Catalyst. J. Amer. Chem. Soc. 99, 5946 (1977).Google Scholar
  548. 530.
    Valentine, D. Jr., and J. W. Scott: Asymmetric Synthesis. Synthesis 1978, 329.Google Scholar
  549. 531.
    Achiwa, K.: Catalytic Asymmetric Hydrogénations With Polymer Supported Chiral Pyrrolidinephosphine-Rhodium Complexes. Chemistry Letters 1978, 905.Google Scholar
  550. 532.
    Yamada, S., and S. Hashimoto: Asymmetric Transamination From Amino Acids(I). Asymmetric Synthesis of Amino Acid By Chemical Transamination From Optically Active Amino Acids to a-Keto Acid. Tetrahedron Letters 1976, 997.Google Scholar
  551. 533.
    Harada, K., and I. Nakamura: The Formation of Schiff Base From Dimethyl a,(3-Dibromosuccinate and an Asymmetric Synthesis of Aspartic Acid. Chemistry Letters 1978, 9.Google Scholar
  552. 534.
    Harada, K., and Y. Kataoka: The Temperature Dependence of Hydrogenolytic Asymmetric Transamination Between Esters of Optically Active Phenylglycine and Pyruvic Acid. Chemistry Letters 1978, 791.Google Scholar
  553. 535.
    Harada, A., and Y. Kataoka: Asymmetric Synthesis of Alanine by Hydrogenolytic Asymmetric Transamination. Tetrahedron Letters 1978, 2103.Google Scholar
  554. 536.
    Matsumura, K., T. Saraie, and N. Hashimoto: Studies of Nitriles. Part 7. Synthesis and Properties of 2-Amino-3,3-dichloroacrylonitrile (ADAN). Chem. Pharm. Bull. 24, 912 (1976).Google Scholar
  555. 537.
    Matsumura, K., T. Saraie, and N. Hashimoto: Studies of Nitriles. Part 8. Reactions of N-Acyl Derivatives of 2-Amino-3,3-dichloroacrylnitrile (ADAN) with Amines. (1). A New Synthesis of 2-Substituted-5-(substituted amino)-oxazole-4-car- bonitriles and 4-N-acylcarboxamides. Chem. Pharm. Bull. 24, 924 (1976).Google Scholar
  556. 538.
    Matsumura, K., H. Shimadzu, O. Miyashita, and N. Hashimito: Studies of Nitriles. Part 9. Reactions of 2-Acylamino-3,3-dichloroacrylic Amide and -N-Acyl- amide with Aliphatic Amines. (2). Syntheses of Some a,a-Diamino-Acid Derivatives. Chem. Pharm. Bull. 24, 941 (1976).Google Scholar
  557. 539.
    Matsumura, K., O. Miyashita, H. Shimadzu, and N. Hashimoto: Studies of Nitriles. Part 10. Synthesis and Reactions of 2-Acylamino-3,3-bis(substituted mercapto)- acrylonitriles and Their Derivatives. A New Synthesis of 2-Substituted-5-(substituted mercapto)oxazole-4-carbonitriles and Their Derivatives. Chem. Pharm. Bull. 24, 948 (1976).Google Scholar
  558. 540.
    Matsumura, K., M. Kuritani, H. Shimadzu, and N. Hashimoto: Studies of Nitriles. Part 11. Preparation and Chemistry of SchifT Base of ADAN. 2-Amino- 3,3-dichloroacrylnitrile. A Highly Effective Conversion into 2-Substituted-4(5)-chloro- imidazole-5 (4)-carboldehydes. Chem. Pharm. Bull. 24, 960 (1976).Google Scholar

Copyright information

© Springer-Verlag/Wien 1979

Authors and Affiliations

  • Ulrich Schmidt
    • 1
  • Johannes Häusler
    • 1
  • Elisabeth Öhler
    • 1
  • Hans Poisel
    • 1
  1. 1.Institut für Organische ChemieUniversität WienAustria

Personalised recommendations