Supersymmetry and Gauge Theories of Weak and Electromagnetic Interactions

  • W. Kummer
Conference paper
Part of the Acta Physica Austriaca book series (FEWBODY, volume 19/1978)


The application of spontaneously broken [1] nonabelian gauge theories [2] to a description of nature faces the problem that many features of such theories cannot be tested at energies which are accessible at present day accelerators. This is still the case even for the existence of the intermediate particle in weak interactions, the W, but it is yet more of a nuisance for models which generalize the simplest “standard” model unifying weak and electromagnetic interactions of Salam, Ward and Weinberg [3]. Such generalizations may have “aesthetic” reasons — the SU(2) × U(1) model of ref.[3] does not contain strong interactions, at the unbroken stage it lacks symmetry under parity etc. — or experimental results seem [4] to necessitate certain modifications. In all these cases it is almost too easy to add further fermions ψ (“matter-fields”) and further scalar bosons S in order to obtain a spontaneously broken theory with massive vector-particles, because the structure of multplets and especially the number and the numerical range of the coupling parameters besides the gauge couplings — self-couplings of the S, Yukawa-couplings between the S and ψ, bare mass-terms — remain to a large degree unrestricted.


Gauge Theory Vector Meson Neutral Current Electromagnetic Interaction Internal Symmetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.W. Higgs, Phys. Letters 12 (1964) 132ADSCrossRefGoogle Scholar
  2. P.W. Higgs, Phys. Rev. 145 (1966) 1156MathSciNetADSCrossRefGoogle Scholar
  3. F. Englert and R. Brout, Phys.Rev. Letters 13 (1964) 31MathSciNetCrossRefGoogle Scholar
  4. T.W. B. Kibble, Phys. Rev. Letters 13 (1964) 585.ADSCrossRefGoogle Scholar
  5. 2.
    C.N. Yang and R.L. Mills, Phys. Rev. 96 (1959) 191.MathSciNetADSCrossRefGoogle Scholar
  6. 3.
    A. Salam in “Elementary Particle Physics”, ed. by N. Svartholm ( Almquist and Wiksell, Stockholm 1968 ) p. 367.Google Scholar
  7. S. Weinberg, Phys.Rev.Lett. 19 (1967) 1246ADSCrossRefGoogle Scholar
  8. S. Weinberg, Phys.Rev.Lett. 27 (1971) 1688.ADSCrossRefGoogle Scholar
  9. 4.
    The standard model is actually in quite good shape right now, except for the negative outcome of parityviolating-experiments in atoms [5], in which, however, the theoretical interpretation is still doubtful regarding the atomic physics side of the problem [6].Google Scholar
  10. 5.
    P.E.G. Baird, M.W.S.M. Brimicombe, G.J. Roberts, P.G.H. Sandars, D.C. Soreide, E.N. Fortson, L.L.Levis, E.G. Lindahl, Letters to Nature 264 (1976) 528.CrossRefGoogle Scholar
  11. 6.
    P.G.H.Sandars et al., Oxford prep. August 1977.Google Scholar
  12. 7.
    Yu. A. Gol’fand and E.P. Likhtman, JETP Letters 13 (1971) 323ADSGoogle Scholar
  13. D.V. Volkov and V.A. Soroka, Phys.Letters 46B (1973) 109.ADSGoogle Scholar
  14. 8.
    J. Wess and B. Zumino, Phys. Letters 49B (1974) 52, Nucl. Phys. B7O (1974) 39.Google Scholar
  15. 9.
    A. Salam and J. Strathdee, Nucl.Phys.B76 (1974) 477MathSciNetADSCrossRefGoogle Scholar
  16. A. Salam and J. Strathdee, Phys. Rev. D11 (1975) 1521MathSciNetADSGoogle Scholar
  17. S. Ferrara, J. Wess and B. Zumino, Phys. Letters 51B (1974) 239.ADSCrossRefGoogle Scholar
  18. 10.
    Cf.e.g. D.R. Freedman, P.van Nieuwenhuizen and S. Ferrara, Proc.of the XVII-th Int.Conf. on High-Energy Physics Tbilisi 1976, vol.II, T.34.Google Scholar
  19. 11.
    Charge-conjugation is denoted by \(\tilde \psi {\text{ = C}}_{{\text{ }}\psi {\text{ }}}^{{\text{ - T}}}{\text{, C }}\gamma {{\text{ }}_{{\text{ }}\mu {\text{ }}}}{{\text{C}}^{{\text{ - 1}}}}{\text{ = - }}\gamma {\text{ }}_{{\text{ }}\mu {\text{ }}}^{\text{T}},\bar \psi {\text{ = }}\psi {{\text{ }}^{\text{ + }}}{\text{ }}\gamma {{\text{ }}_{\text{0}}}{\text{, }}{{\text{C}}^{\text{T}}}{\text{ = }}{{\text{C}}^{{\text{ - 1}}}}{\text{ = }}{{\text{C}}_{\text{j}}}\) for a Majorana spinor \(\bar{X}=X\).Google Scholar
  20. 12.
    R.Haag, J.T. Lopuzanski and M. Sohnius, Nucl. Phys. B88 (1975) 257.ADSCrossRefGoogle Scholar
  21. 13.
    This statement follows from \({{(\bar{\theta }X)}^{+}}=\bar{\theta }X\); in general \(\bar \psi \psi ' = \tilde \psi '\tilde \psi \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{,} \bar \psi {\gamma _5}\psi ' = \bar \tilde \psi '{\gamma _5}\tilde \psi ,\bar \psi {\gamma _\mu }{\gamma _5}\psi ' = \tilde \psi '{\gamma _\mu }{\gamma _5}\tilde \psi ,\bar \psi {\gamma _\mu }\psi ' = - \bar \tilde \psi '{\gamma _\mu }\tilde \psi ,\bar \psi {\sigma _{\mu v}}\psi ' = - \bar \tilde \psi '{\sigma _{\mu v}}\tilde \psi .\) Google Scholar
  22. 14.
    For \(\theta =\tilde{\theta }\) one can prove easily the “reduction” formula \((\gamma _{5}^{2}=-1)4{{\theta }_{\alpha }}{{\bar{\theta }}_{\beta }}=-(\bar{\theta }\theta ){{\sigma }_{\alpha \beta }}-(\bar{\theta }i{{\gamma }_{5}}\theta )i{{({{\gamma }_{5}})}_{\alpha \beta }}+(\bar{\theta }i{{\gamma }_{\upsilon }}{{\gamma }_{5}}\theta )i{{({{\gamma }^{\upsilon }}{{\gamma }_{5}})}_{\alpha \beta }}\) which reduces any other term to the form (2.7). Other spinor gymnastics may be found in [9].Google Scholar
  23. 15.
    J.Wess and B. Zumino, Nucl.Phys. B78 (1974) 1MathSciNetADSCrossRefGoogle Scholar
  24. A.Salam and J.Strathdee, Phys.Letters 51B (1974) 353MathSciNetADSCrossRefGoogle Scholar
  25. S.Ferrara and B. Zumino, Nucl.Phys. B71 (1974) 413. Only a relation of the type (3.4) below will become necessary.Google Scholar
  26. 16.
    The factor (-2) is introduced for later convenience.Google Scholar
  27. 17.
    R. Delbourgo, A.Salam and J.Strathdee, Phys. Letters 51B (1974) 475;Google Scholar
  28. A. Salam and J. Strathdee, Nucl.Phys. B87 (1975) 85MathSciNetADSCrossRefGoogle Scholar
  29. A. Salam and J. Strathdee, Nucl.Phys. B97 (1975) 293.MathSciNetADSCrossRefGoogle Scholar
  30. P. Fayet, Nucl.Phys. B9O (1975) 104.ADSCrossRefGoogle Scholar
  31. 18.
    We shall see below that F± can be eliminated from the Lagrangian in a renormalizable field-theory.Google Scholar
  32. 19.
    E.g. φ± may be selected from a general φ by the SUSY-invariant supplementary condition D±φ = O. It alsoGoogle Scholar
  33. may be used in order to select the D or F-components in L in an invariant manner:\(\frac{1}{2}(\bar{D}D)\phi =F\)+ total derivatives,\(\frac{1}{2}{{(\bar{D}D)}^{2}}\phi =D\)+ total derivatives.Google Scholar
  34. 20.
    A linear term ξ+f+ is forbidden, if σ+ is “normal”.Google Scholar
  35. 21.
    P. Fayet and J. Iliopoulos, Phys. Letters 51B (1974) 461.ADSCrossRefGoogle Scholar
  36. P. Fayet, Phys. Letters 58B (1975) 67.ADSCrossRefGoogle Scholar
  37. L. O’Raifeartaigh, Nucl. Phys. B96 (1975) 331.MathSciNetADSCrossRefGoogle Scholar
  38. 22.
    A. Salam and J.Strathdee, Phys. Letters 49D (1974) 465.MathSciNetADSCrossRefGoogle Scholar
  39. 23.
    W.A. Bardeen (unpublished).Google Scholar
  40. B. de Wit and D.Z. Freedman, Phys. Rev. Letters 35 (1975) 827.Google Scholar
  41. 24.
    Whenever we introduce a specific multiplet-structure of φ+ in the following, we shall reserve the symbols plus and minus for the electric charge and denote the helicities instead by R (right) and L (left). We also write down, as in (8.1), only the fermion content, the scalar bosons being defined by M+R→ S+R (or S(M) +R) etc.Google Scholar
  42. 25.
    G.B. Mainland and M. Tanaka, Phys. Rev. D13 (1976) 2318.Google Scholar
  43. 26.
    W. Kummer, The construction of vector-like super-symmetric gauge-models of weak and electromagnetic interactions, Ann. Phys. (N.Y.) to be published.Google Scholar
  44. 27.
    This model is contained in more elaborate ones [28].Google Scholar
  45. 28.
    P. Fayet, Nucl. Phys. B90 (1975) 104, Nuovo Cim. 31A (1976) 626,Phys. Rev. D14 (1976) 3557.Google Scholar
  46. D.M. Capper, A.Salam, J.Strathdee, Nucl. Phys. B107 (1976) 137.ADSCrossRefGoogle Scholar
  47. A.A. Slavnov, priv. communication.Google Scholar
  48. 29.
    H. Georgi and S.L. Glashow, Phys. Rev. D6 (1972) 429.ADSGoogle Scholar
  49. D. Gross and R. Jackiw, Phys. Rev. D6 (1972) 477.ADSGoogle Scholar
  50. C. Bouchiat, J. Iliopoulos and Ph. Meyer, Phys.Letters 38 (1972) 519.ADSGoogle Scholar
  51. 30.
    J.D. Bjorken and S.Weinberg, Phys. Rev. Letters 38 (1977) 622.ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • W. Kummer
    • 1
  1. 1.Technische Universität WienAustria

Personalised recommendations