Topological Methods for Gauge Theories

  • B. Schroer
Conference paper
Part of the Acta Physica Austriaca book series (FEWBODY, volume 19/1978)


In these lectures I will explain and illustrate some topological ideas which give useful structural insight into gauge theories: winding numbers for gauge fields and related zero eigenvalue states of the euclidean Dirac equation. A suitably formulated axial anomaly equation which is similar to the Adler-Bell-Jackiw anomaly relation in quantum field theory provides the key to a pedestrian derivation of the Atiyah-Singer index theorem. The method can be easily generalized to Dirac spinors in euclidean gravitational fields and to other field equations whose index is governed by different winding numbers. The modification of the anomaly relation due to boundary effects and its relation to the Atiyah-Patodi-Singer index theorem will also be briefly explained. Such extensions of the conventional situation allow fractional winding numbers and would be relevant if the “meron” idea of Callan, Gross, and Dashen could be converted into a topological mechanism for quark confinement. In euclidean functional integration the Atiyah-Singer modes lead to a change of the Mathews-Salam rules for the computation of vacuum expectation values of quark fields.


Gauge Theory Vector Bundle Dirac Equation Dirac Operator Zero Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.A.M. Dirac, Ann. Math. 36 (1935) 657.MathSciNetCrossRefGoogle Scholar
  2. S.L. Adler, Phys. Rev. D6 (1972) 3445.Google Scholar
  3. R. Jackiw and C. Rebbi, Phys. Rev. D14 (1976) 517.MathSciNetADSGoogle Scholar
  4. 2.
    N.K. Nielsen and B. Schroer, Nucl. Phys. B127 (1977) 493, Appendix A.Google Scholar
  5. 3.
    F.W. Warner, Foundations of differentiable manifolds and Lie Groups (Scott, Foresman and Co, Glenview Ill., 1971 ).Google Scholar
  6. 4.
    J.W. Milnor and J.D. Stasheff “Characteristic Classes”, Annals of Mathematics Studies Number 76, Princeton University Press 1974.Google Scholar
  7. 5.
    M.F. Atiyah and I.M. Singer, Bull. Amer., Math. Soc. 69 (1963) 422Google Scholar
  8. M.F. Atiyah and I.M. Singer,Ann. Math. 87 (1968) 596.Google Scholar
  9. 6.
    I.Z. Hochberg and M.G. Krein, Amer.Math.Soc.Transl.(2) 13 (1960).Google Scholar
  10. 7.
    This and many other examples are discussed in B. Booß, Topologie and Analysis, (Springer-Verlag, Berlin 1977 ). The reader who is interested in the functional analysis aspects of the index problem and the evolution of ideas in this field should consult this reference.Google Scholar
  11. 8.
    I.M. Gelfand, On elliptic equation, Russian Math. Survey 15 (1960) 3, 113.Google Scholar
  12. 9.
    F.Hirzebruch, Topological methods in algebraic geometry ( Springer-Verlag, Berlin 1966 ).MATHGoogle Scholar
  13. 10.
    S.L. Adler, Phys.Rev. 177 (1969) 2426.ADSCrossRefGoogle Scholar
  14. J.S. Bell and R. Jackiw, N.C. 60A (1969) 47.CrossRefGoogle Scholar
  15. 11.
    J.Schwinger, Phys. Rev. Lett. 3 (1959) 269.CrossRefGoogle Scholar
  16. 12.
    R.T. Seeley, Proc. Symp. Pure and Appl. Math. 10 (1967) 288.MathSciNetGoogle Scholar
  17. 13.
    R.Jackiw and K. Johnson, Phys.Rev. 182 (1969) 1459.ADSCrossRefGoogle Scholar
  18. 14.
    N.K. Nielsen, H.Römer and B. Schroer, Phys.Lett. 70B (1977) 445;ADSGoogle Scholar
  19. N.K. Nielsen, H.Römer and B. Schroer, Nucl. Phys. B, to be published.Google Scholar
  20. 15.
    M.A. Atiyah, R.Bott and V.K. Patodi, Inv. Math. 19 (1973) 279.MathSciNetADSMATHCrossRefGoogle Scholar
  21. P.B. Gilkey, The Index Theorem and the Heat Equation, Math. Lecture Series, Publish or Perish Inc. 1974.Google Scholar
  22. 16.
    B.De Witt, Dynamical Theory of Group and Field, Gordon and Breach 1965.Google Scholar
  23. 17.
    N.K. Nielsen, to be published.Google Scholar
  24. 18.
    H.S. Tsao, Phys.Lett. 68B (1977) 79.ADSGoogle Scholar
  25. 19.
    P.B. Gilkey, Proc.Symp.Pure Math. 27 (1973) 263Google Scholar
  26. P.B. Gilkey, J. Diff. Geom. 10 (1975) 601.MathSciNetMATHGoogle Scholar
  27. 20.
    The form of the gravitational anomaly has been discussed by Feynman graph methods in R. Delbourgo and A.Salam, Phys. Lett. 40B (1972) 381Google Scholar
  28. T.Eguchi and P.G.O.Freund, Phys.Rev.Lett. 37 (1976) 1251.MathSciNetADSCrossRefGoogle Scholar
  29. 21.
    The Hodge theory is discussed in reference 3.Google Scholar
  30. 22.
    N.K. Nielsen, H.Römer and B.Schroer, Phys.Lett. 70B (1977) 445.MathSciNetCrossRefGoogle Scholar
  31. 23.
    S.Hawking and C.N.Pope, Phys.Lett. 73B (1978) 42.MathSciNetCrossRefGoogle Scholar
  32. 24.
    This is a special case of a very general construction explained in §26 of reference 9.Google Scholar
  33. 25.
    S.W. Hawking, Phys.Lett. 60A (1977) 81.MathSciNetADSGoogle Scholar
  34. 26.
    M.A. Atiyah, V.K. Patodi and I.M. Singer, Math. Proc. Camb. Phil. Soc. 77 (1975) 43.MathSciNetMATHCrossRefGoogle Scholar
  35. 27.
    H.Römer and B.Schroer, Phys.Lett. 71B (1977) 182.MathSciNetCrossRefGoogle Scholar
  36. 28.
    T.Eguchi, P.B.Gilkey and A.J.Hanson, Phys.Rev.Dl7 (1978) 423.MathSciNetADSGoogle Scholar
  37. 29.
    J. Schwinger, Phys.Rev. 128 (1962).Google Scholar
  38. 30.
    F.A. Berezin, Method of second quantization, Academic Press, New-York-London (1966).MATHGoogle Scholar
  39. 31.
    A.Salam and P.T. Mathews (1953), Phys. Rev. 90, 690.ADSMATHCrossRefGoogle Scholar
  40. 32.
    G.’t Hooft, Phys.Rev. D14 (1976) 3432.CrossRefGoogle Scholar
  41. 33.
    A.D’Adda, S.Chadha, P.DiVecchia and F.Nicodemi, Phys. Letters 72B (1977) 103.MathSciNetADSCrossRefGoogle Scholar
  42. 34.
    J.H. Lowenstein and J.A. Swieca, Ann.Phys. 68 (1971) 172MathSciNetADSCrossRefGoogle Scholar
  43. 35.
    In a field-theoretic formulation this problem was discussed in R. Haag, N.C. 24 (1962) 287.Google Scholar
  44. 36.
    N.K. Nielsen and B.Schroer, Phys.Lett. 66B (1977) 373.MathSciNetCrossRefGoogle Scholar
  45. 37.
    V.Kurak,B.Schroer and J.A.Swieca, Nucl.Phys.Bl34 (1978)Google Scholar
  46. 38.
    A.A. Belavin, A.M. Polyakov, A.S. Schwarz and Yu.S. Tyuphin, Phys.Lett. 59B (1975) 85.MathSciNetCrossRefGoogle Scholar
  47. 39.
    A derivation of the modified rules in QCD2 based on cluster properties will be contained in a forthcoming paper of K.D. Rothe and J.A. Swieca.Google Scholar
  48. 40.
    K.D. Rothe and J.A. Swieca, Phys.Rev. 15D (1977) 541.ADSGoogle Scholar
  49. 41.
    N.K. Nielsen and B.Schroer, Phys.Lett. 66B (1977) 475.MathSciNetCrossRefGoogle Scholar
  50. 42.
    C.Callan, R.Dashen, D.Gross, Phys.Lett. 66B (1977) 375.CrossRefGoogle Scholar
  51. 43.
    R.Jackiw and C.Rebbi, Phys. Rev. D13 (1976) 3398.MathSciNetADSGoogle Scholar
  52. 44.
    S.Coleman, unpublished.Google Scholar
  53. 45.
    L.Brown, R.Carlitz and C.Lee, Phys.Rev. D16 (1977) 417.ADSGoogle Scholar
  54. J. Kishis, Phys. Rev. D15 (1977) 2329.Google Scholar
  55. N.K. Nielsen and B.Schroer, Nucl. Phys. B127 (1977) 493.MathSciNetADSCrossRefGoogle Scholar
  56. R.Jackiw and C.Rebbi, Phys.Rev. D16 (1977) 1052.MathSciNetADSCrossRefGoogle Scholar
  57. M. Ansourian, Phys.Rev.Lett. 70B (1977) 301.MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • B. Schroer
    • 1
  1. 1.Institut für Theoretische PhysikFreie Universität BerlinGermany

Personalised recommendations