Advertisement

Hamiltonian Systems

  • Walter Thirring
  • Evans Harrell
Chapter

Abstract

A 2-form is canonically defined on the cotangent bundle of a manifold. Diffeomorphisms leaving this 2-form invariant are called canonical transformations.

Keywords

Phase Space Vector Field Perturbation Theory Hamiltonian System Poisson Bracket 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. R. Barrar. Convergence of the von Zeipel Procedure. Celestial Mechanics 2, 494–504, 1970.MathSciNetADSMATHCrossRefGoogle Scholar
  2. N. Bogoliubov and N. Krylov. Introduction to Non-linear Mechanics. Princeton: Princeton University Press, 1959.Google Scholar
  3. J. Ford. The Statistical Mechanics of Classical Analytic Dynamics. In: Fundamental Problems in Statistical Mechanics, vol. III, E. Cohen, ed. Amsterdam: North Holland, 1975.Google Scholar
  4. G. Giacaglia. Perturbation Methods in Non-linear Systems. New York: Springer-Verlag, 1972.MATHCrossRefGoogle Scholar
  5. M. Golubitsky and V. Guillemin. Stable Mappings and their Singularities. New York: Springer-Verlag, 1973.MATHCrossRefGoogle Scholar
  6. V. Guillemin and S. Sternberg. Geometric Asymptotics. Providence: American Mathematical Society, 1977.MATHGoogle Scholar
  7. M. Hirsch and S. Smale. Differential Equations, Dynamical Systems, and Linear Algebra. New York: Academic Press, 1974.MATHGoogle Scholar
  8. W. Hunziker. Scattering in Classical Mechanics. In: Scattering Theory in Mathematical Physics, J. A. Lavita and J. Marchand, eds. Boston: D. Reidel, 1974.Google Scholar
  9. R. Jost. Poisson Brackets (An Unpedagogical Lecture). Rev. Mod. Phys. 36, 572–579, 1964.ADSCrossRefGoogle Scholar
  10. G. Mackey. The Mathematical Foundations of Quantum Mechanics. New York: Benjamin, 1963.MATHGoogle Scholar
  11. J. Moser, ed. Dynamical Systems: Theory and Applications. New York: Springer-Verlag, 1975.MATHGoogle Scholar
  12. J.-M. Souriau. Structure des Systèmes Dynamiques: Maîtrises de Mathématiques. Paris: Dunod, 1970.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1978

Authors and Affiliations

  • Walter Thirring
    • 1
  • Evans Harrell
    • 2
  1. 1.Institute for Theoretical PhysicsUniversity of ViennaAustria
  2. 2.Massachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations