Advertisement

Abstract

4-Ylidenebutenolides and 4-ylidenetetronic acids comprise a group of natural products many members of which have been discovered only in the past decade. The term “butenolide” describes the unsaturated γ-lactone system (1) and “tetronic acid” is the trivial name for 3-hydroxy- but-2-enolide (2). The corresponding 4-ylidene derivatives contain an additional exocyclic carbon-to-carbon double bond at C-4, and hence formulation (3) describes the 4-ylidenebutenolide, and (4) the 4-ylidene- tetronic acid, ring systems*. An excellent and comprehensive account of natural 4-ylidenebutenolides and 4-ylidenetetronic acids known up to 1962 has been given by Dean in his book (1). At this time the list numbered just thirteen metabolites, and included protoanemonin and matricaria lactone found in higher plants, patulin and dehydrocarolic acid isolated from fungi, and eight lichen pulvinic acid pigments. Today approximately seventy natural metabolites characterized structurally by the presence of one of the ring systems (3) or (4) are known. The early chemistry of butenolides has been well reviewed by Rao (2) and a useful account of tetronic acids is also available (3).

Keywords

Maleic Anhydride Phthalic Anhydride Aspergillus Terreus Tetrahedron Letter Penicillic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dean, F. M.: Naturally Occurring Oxygen Ring Compounds. Butterworths. 1963.Google Scholar
  2. 2.
    Rao, Y. S.: Recent Advances in the Chemistry of Unsaturated Lactones. Chem. Rev. 76, 625 (1976); idem: Chemistry of Butenolides, ibid. 64, 353 (1964).Google Scholar
  3. 3.
    Haynes, L. J., and J. R. Plimmer: Tetronic Acids. Quart. Rev. (Chem. Soc. London) 14, 292 (1960).Google Scholar
  4. 4.
    Tschesche, R., K. Welmar, G. Wulff, and G. Snatzke: Über Folgeprodukte einer unbekannten genuinen Vorstufe des Ranunculins in Ranunculaceen. Chem. Ber. 105, 290 (1972).Google Scholar
  5. 5.
    Hill, R., and R. van Heyningen: Ranunculin: The Precursor of the Vesicant Substance of the Buttercup. Biochem. J. 49, 332 (1951).Google Scholar
  6. 6.
    Gripenberg, J., and J. Martikkala: Fungus Pigments XIX. Xylerythrin and its 5-O-Methyl Derivative. Acta Chem. Scand. 23, 2583 (1969).Google Scholar
  7. 7.
    Gripenberg, J., and J. Martikkala: Fungus Pigments XX. On the Structure of Peniophorin, One of the Pigments Produced by Peniophora sanguinea Bres. Acta. Chem. Scand. 24, 3444 (1970).Google Scholar
  8. 8.
    Gripenberg, J.: Fungus Pigments XXI. Peniophorinin, a Further Pigment Produced by Peniphora sanguinea Bres. Acta. Chem. Scand 24, 3449 (1970).Google Scholar
  9. 9.
    Gripenberg, J.: Fungus Pigments XXII. Peniosanguin and its Methyl Ether. Acta. Chem. Scand. 25, 2999 (1971).Google Scholar
  10. 10.
    Scott, P. M., and B. P. C. Kennedy: Improved Method for the Thin-layer chromato­graphic determination of Patulin in Apple Juice. J. Ass. Off. Anal. Chem. 56, 813 (1973).Google Scholar
  11. 11.
    Ellis, J. R., and T. M. McCalla: Effects of patulin and method of application on growth stages of wheat. Appl. Microbiol. 25, 562 (1973).Google Scholar
  12. 12.
    Small, J.: Celery seed. Food 17, 181 (1948).Google Scholar
  13. 13.
    Ciamician, G., and P. Silber: Über die hochsiedenden Bestandteile des Sellerieöls. Chem. Ber. 30, 492 (1897).Google Scholar
  14. 14.
    Barton, D. H. R., and J. X. de Vries: The Constitution of Sedanolide. J. Chem. Soc. (London) 1916(1963).Google Scholar
  15. 15.
    Gold, H. J., and C. W. Wilson: III: Alkylidene Phthalides and Dihydrophthalides from Celery. J. Organ. Chem. (U.S.A.) 28, 985 (1963).Google Scholar
  16. 16.
    Gold, H. J., and C. W. Wilson: III: The Volatile Flavour Substances of Celery. J. Food Science 28, 484 (1963).Google Scholar
  17. 17.
    Naves, Y. R.: Etudes sur les Matières Végétales Volatiles XXIV. Composition de l’huile Essentielle et du Résinoide de Livèche (Levisticum officinale Koch.). Helv. Chim. Acta 26, 1281 (1943).Google Scholar
  18. 18.
    Mitsuhashi, H., and U. Nagai: Studies on the Constituents of Umbilliferae Plants VII. Structure of Ligustilide 2. Tetrahedron 19, 1277 (1963).Google Scholar
  19. 19.
    Mitsuhashi, H., T. Muramatsu, U. Nagai, T. Nakano, and K. Ueno: Studies on the Constituents of Umbilliferae Plants VIII. Distribution of Alkylphthalides in Umbelliferae Plants. Chem. Pharm. Bull. (Tokyo) 11, 1317 (1963).Google Scholar
  20. 20.
    Knight, D. W., and G. Pattenden: 4-Phosphoranylidenebutenolide Intermediates in the Synthesis of 4-Ylidenebutenolides and 4-Ylidenetetronic Acids. Synthesis of Alkylidenephthalide Constituents of Celery Odour and Models for Freelingyne. J. Chem. Soc. Perkin I (London) 635 (1975).Google Scholar
  21. 21.
    Kariyone, T., and S. Shimizu: Synthesis of Alkylidenephthalides and their Odor. J. Pharmac. Soc. Japan 73, 336 (1953).Google Scholar
  22. 22.
    Lardelli, G., G. Dijkstra, P. D. Harkes, and J. Boldingh: A New y-Lactone found in Butter. Ree. trav. chim. Pays-Bas. 85, 43 (1966).Google Scholar
  23. 23.
    Sörensen, N. A., and K. Stavholt: A Hexahydro Matricaria ester — “Composit- Cumulene 1” from Scentless Mayweed (Matricaria inodora L.). Acta Chem. Scand. 4, 1080 (1950).Google Scholar
  24. 24.
    Christensen, P. K., N. A. Sörensen, I. Bell, E. R. H. Jones, and M. C. Whiting: Constitution of the so-called “Composit-cumulene 1” from Scentless Mayweed (.Matricaria inodora). Festschr. Arthur Stoll 545 (1957) [Chem. Abstr. 53, 346e, (1959)].Google Scholar
  25. 25.
    Bohlmann, F., T. Burkhardt, and C. Zdero: Naturally Occurring Acetylenes. London: Academic Press. 1973.Google Scholar
  26. 26.
    Bohlmann, F., H. Mönch, and P. Blaszkiewicz: Die Polyine der Gattung Matricaria L. Chem. Ber. 100, 611 (1967).Google Scholar
  27. 27.
    Lam, J.: Polyacetylenes of Solidago virgaurea: Their Seasonal Variation and NMR Longerange Spin Coupling Constants. Phytochem. 10, 647 (1971).Google Scholar
  28. 28.
    Bohlmann, F., H. Bornowski, and C. Arndt: Über das erste natürlich vorkommende Kumulen. Chem. Ber. 98, 2236 (1965).Google Scholar
  29. 29.
    Christensen, P. K.: Structural and Spectroscopical Studies on Naturally Occurring Acetylenes of Composites. Norges Tek. Vitenkap akad. Ser. 2, 7 (1959) [Chem. Abstr. 54, 653li (1960)].Google Scholar
  30. 30.
    Bohlmann, F., and C. Zdero: Über ein neues Kumulen aus Erigeron canadense L. (1). Tetrahedron Letters 2465 (1970).Google Scholar
  31. 31.
    Bohlmann, F., K.-M. Kleine, C. Arndt, and S. Köhn: Neue Inhaltsstoffe der Gattung Anthem is L. Chem. Ber. 98, 1616 (1965).Google Scholar
  32. 32.
    Bohlmann, F., P. Herbst, C. Arndt, H. Schönowsky, and H. Gleinig: Über einen Neuen Typ von Polyacetylenverbindungen aus verschiedenen Vertretern des Tribus Anthemideae L. Chem. Ber. 94, 3193 (1961).Google Scholar
  33. 33.
    Bohlmann, F., and K.-M. Rode: Die Polyine der Gattung Carlina L. Chem. Ber. 100, 1507 (1967).Google Scholar
  34. 34.
    Bohlmann, F., and C. Zdero: Über ein Thiophenlacton aus Chamaemelum nobile L. Chem. Ber. 99, 1226 (1966).Google Scholar
  35. 35.
    Massy-Westropp, R. A., G. D. Reynolds, and T. M. Spotswood: Freelingyne, an Acetylenic Sesquiterpenoid. Tetrahedron Letters 1939 (1966).Google Scholar
  36. 36.
    Ingham, C. F., and R. A. Massy-Westropp: The Stereochemistry of Freelingyne and the Synthesis of Dihydrofreelingyne. Austral. J. Chem. 27, 1491 (1974).Google Scholar
  37. 37.
    Birch, A. J., G. S. R. Subba Rao, and J. P. Turnbull: Eremolactone. Tetrahedron Letters 4749 (1966).Google Scholar
  38. 38.
    Begley, M. J., D. W. Knight, and G. Pattenden: Stereochemistry of Freelingyne [(4Z,6E)-9-(3-Furyl)-2,6-dimethylnona-2,4,6-Trien-8-yn-4-olide] by X-ray Analysis. J. Chem. Soc. Perkin II (London) 1863 (1975).Google Scholar
  39. 39.
    Strain, H. H., W. A. Svec, K. Aitzetmüller, M. C. Grandolfo, J. J. Katz, H. Kjøsen, S. Norgärd, S. Liaaen-Jensen, F. T. Haxo, P. Wegfahrt, and H. Rapoport: The Structure of Peridinin, the Characteristic Dinoflagellate Carotenoid. J. Amer. Chem. Soc. 93, 1823 (1971).Google Scholar
  40. 40.
    Johansen, J. E., W. A. Svec, S. Liaaen-Jensen, and F. T. Haxo: Carotenoids of the Dinophyceae. Phytochem. 13, 2261 (1974).Google Scholar
  41. 41.
    Gallo, G. G., C. Coronelli, A. Vigevani, and G. C. Lancini: The Structure of Tetrenolin, a New Antibiotic Substance. Tetrahedron 25, 5677 (1969).Google Scholar
  42. 42.
    Pagani, H., G. Lancini, G. Tamoni, and C. Coronelli: Tetrenolin and SS/1018A, Antibacterial Agents Isolated from a Strain of Actinomycetales. J. Antibiotics 26, 1 (1973).Google Scholar
  43. 43.
    Kazlauskas, R., P. T. Murphy, R. J. Quinn, and R. J. Wells: Two New Sesterterpene Lactones from a Sponge. Tetrahedron Letters 2635 (1976).Google Scholar
  44. 44.
    Evans, W. C., B. S. W. Smith, P. Moss, and H. N. Fernley: Bacterial Metabolism of 4-Chlorophenoxyacetate. Biochem. J. 122, 509 (1971).Google Scholar
  45. 45.
    Evans, W. C., and J. K. Gaunt: Metabolism of 4-chloro-2-methylphenoxyacetate by a Soil Pseudomonad. Preliminary Evidence for the Metabolic Pathway. Biochem. J. 122, 519 (1971).Google Scholar
  46. 46.
    Evans, W. C., B. S. W. Smith, H. N. Fernley, and J. I. Davies: Bacterial Metabolism of 2,4-Dichlorophenoxyacetate. Biochem. J. 122, 543 (1971).Google Scholar
  47. 47.
    Steglich, W.: Pilzfarbstoffe. Chem. Unserer Zeit 9, 117 (1975).Google Scholar
  48. 48.
    Murray, J.: Lichens and Fungi. Part I, Polyporic Acid in Stictae. J. Chem. Soc. (London) 1345 (1952).Google Scholar
  49. 49.
    Asano, M., and Y. Kameda: Über die Konstitution des Calycins und dessen Synthese (IV. Mitteil, über Flechten-Farbstoffe der Pulvinsäure-Reihe). Chem. Ber. 68, 1568 (1935).Google Scholar
  50. 50.
    Äkermark, B.: Studies on the Chemistry of Lichens. 14. The Structure of Calycin. Acta Chem. Scand. 15, 1695 (1961).Google Scholar
  51. 51.
    Edwards, R. L., and M. Gill: Constituents of the Higher Fungi. Part XIII. 2-Aryl-3- methoxymaleic Anhydrides from Pulvinic Acid Derivatives. A Convenient Method for Determination of Structure of Fungal and Lichen Pulvinic Acid Derivatives. J. Chem. Soc. (London) 1534(1973).Google Scholar
  52. 52.
    Agarwal, S. C., and T. R. Seshadri: A Reinvestigation of the Structure of Pinastric Acid and Isopinastric Acid. Indian J. Chem. 2, 17 (1964).Google Scholar
  53. 53.
    Knight, D. W., and G. Pattenden: Synthesis of the Pulvinic Acid Pigments of Lichen and Fungi. Chem. Commun. 660 (1976).Google Scholar
  54. 54.
    Steglich, W., H. Besl, and K. Zipfel: Pigments of Fungi XIX. Structural Determina­tion of Pulvinic Acids by NMR Spectroscopy. Z. Naturforsch. 29b, 96 (1974).Google Scholar
  55. 55.
    Beaumont, P. C., R. L. Edwards, and G. C. Elsworthy: Constituents of the Higher Fungi. Part VIII. The Blueing of Boletus Species. Variegatic Acid, a Hydroxytetronic Acid from Boletus Species and a Reassessment of the Structure of Boletol. J. Chem. Soc. (C) (London) 2968 (1968).Google Scholar
  56. 56.
    Steglich, W., W. Furtner, and A. Prox: Neue Pulvinsäure-Derivate aus Xerocomus chrysenteron (Bull, ex St. Amans), Quel, und Untersuchungen zur Frage des Vor­kommens von Anthrachinonpigmenten bei Boletaceen. Z. Naturforsch. 23 b, 1044 (1968).Google Scholar
  57. 57.
    Steglich, W., W. Furtner, and A. Prox: Xerocomsäure und Gomphidsäure, zwei chemotaxonomisch interessante Pulvinsäure-Derivate aus Gomphidius glutinosus (Schff) Fr. Z. Naturforsch. 24b, 941 (1969).Google Scholar
  58. 58.
    Steglich, W., I. Pils, and A. Bresinsky: Nachweis und chemotaxonomische Bedeu­tung von Pulvinsäure in Rhizopogon (Gasteromycetes). Z. Naturforsch. 26b, 376 (1971).Google Scholar
  59. 59.
    Besl, H., A. Bresinsky, W. Steglich, and K. Zipfel: Über Gyrocyanin, das blauende Prinzip des Kornblumen-Röhrlings (Gyroporus cyanescens), und eine oxidative Ringverengung des Atromentins. Chem. Ber. 106, 3223 (1973).Google Scholar
  60. 60.
    Steglich, W., W. Furtner, and A. Prox: Pigment V. Variegatorubin, ein Oxydationsprodukt der Variegatsäure aus Suillus piperatus (Bull, ex Fr.) O. Kuntze und anderen Boletaceen. Z. Naturforsch. 25b, 557 (1970).Google Scholar
  61. 61.
    Gaylord, M. C, R. G. Benedict, G. M. Hatfield, and L. R. Brady: Isolation of Diphenyl-substituted Tetronic Acids from Cultures of Paxillus atrotomentosus. J. Pharm. Sci. 59, 1420 (1970).Google Scholar
  62. 62.
    Beaumont, P. C., and R. L. Edwards: Constituents of the Higher Fungi, Part XI. Boviquinone-3(2,5-Dihydroxy-3-farnesyl-l,4-benzoquinone), Diboviquinone-3,4, Me- thylenediboviquinone-3,3, and Xerocomic Acid from Gomphidius rutilus Fr. and Diboviquinone-4,4 from Voletus (Suillus) bovinus (Linn ex Fr.) Kuntze. J. Chem. Soc. (C) (London) 2582(1971).Google Scholar
  63. 63.
    Edwards, R. L., and M. Gill: Constituents of the Higher Fungi, Part XII. Identifi­cation of Involutin as (-)-cw-5-(3,4-Dihydroxyphenyl)-3,4-dihydroxy-2-(4-hydroxy- phenyl)-cyclopent-2-enone and Synthesis of (±)-cis-Involutin Trimethyl Ether from Isoxerocomic Acid Drivatives. J. Chem. Soc. Perkin I (London) 1529 (1973).Google Scholar
  64. 64.
    Singh, P., and M. Anchel: Atromentic Acid from Clitocybe illudens. Phytochemistry 10, 3259 (1971).Google Scholar
  65. 65.
    Bresinsky, A., H. Besl, and W. Steglich: Gyroporin und Atromentinsäure aus Leccinum-aurantiacum-Kulturen. Phytochemistry 13, 271 (1974).Google Scholar
  66. 66.
    Maass, W. S. G.: Pulvinamide and Possible Biosynthetic Relationships with Pulvinic Acid. Phytochemistry 9, 2477 (1970).Google Scholar
  67. 67.
    Frank, R. L., S. M. Cohen, and J. N. Coker: The Structures and Syntheses of Rhizocarpic Acid and Epanorin. J. Amer. Chem. Soc. 72, 4454 (1950).Google Scholar
  68. 68.
    Jerram, W. A., A. G. McInnes, W. S. G. Maass, D. G. Smith, A. Taylor, and J. A. Walter: The Chemistry of Cochliodinol, a Metabolite of Chaetomium spp. Canad. J. Chem. 53, 727 (1975).Google Scholar
  69. 69.
    Schönberg, A., and A. Sina: Molecular Rearrangements. Part V. A Case of a Thermal Reversible α-Diketone-γ-Lactone Rearrangement. Some Experiments with Vulpinic Acid and Related Compounds. J. Chem. Soc. (London) 601 (1946).Google Scholar
  70. 70.
    Edwards, R. L., and M. Gill: Constituents of the Higher Fungi. Part XIV. 3’,4’,4- Trihydroxypulvinone, Thelephoric Acid, and Novel Pyrandione and Furanone Pigments from Suillus grevillei (Klotsch) Sing [Boletus elegans (Schum. per Fries)]. J. C. S. Perkin I, 1921 (1973).Google Scholar
  71. 71.
    Claisen, L., and T. Ewan: Über die Einwirkung des Oxaläthers auf Dibenzyl- keton. Ann. 284, 245 (1895).Google Scholar
  72. 72.
    Ojima, N., S. Takenaka, and S. Seto: New Butenolides from Aspergillus terreus. Phytochemistry 12, 2527 (1973).Google Scholar
  73. 73.
    Ojima, N., S. Takenaka, and S. Seto: Structures of Pulvinone Derivatives from Aspergillus terreus. Phytochemistry 14, 573 (1975).Google Scholar
  74. 74: Knight, D. W., and G. Pattenden: Synthesis of Pulvinones, Metabolites of Aspergillus terreus and Suillus grevillei. Chem. Commun. 876 (1975).Google Scholar
  75. 75.
    Knight, D. W., and G. Pattenden: Specificities of Enzymatic Prenylation and Chromanation in the Biosynthesis of Aspulvinone Pigments in Aspergillus terreus. Chem. Commun. 635 (1976).Google Scholar
  76. 76.
    Begley, M. J., D. W. Knight, and G. Pattenden: Structural Revision for Prenylated Pulvinone Metabolites from Aspergillus terreus. Tetrahedron Letters 131 (1976).Google Scholar
  77. 77.
    Golding, B. T., R. W. Rickards, and Z. Vanek: New Metabolites of Aspergillus terreus: 3-Hydroxy-2,5-bis(p-hydroxyphenyl)penta-2,4-dien-4-olide and Derivatives. J. C. S. Perkin I, 1961 (1975).Google Scholar
  78. 78.
    Ojima, N., K. Ogurä, and S. Seto: Biosynthesis of Pulvinone Derivatives in Aspergillus terreus. Enzymatic Prenylation of Dihydroxypulvinone. Chem. Commun. 717 (1975).Google Scholar
  79. 79.
    Ojima, N., I. Takahashi, K. Ogura, and S. Seto: New Metabolites from Aspergillus terreus related to the Biosynthesis of Aspulvinones. Tetrahedron Letters 1013 (1976).Google Scholar
  80. 80.
    Bracken, A., and H. Raistrick: Studies in the Biochemistry of Micro-organizms. 75. Dehydrocarolic Acid, a Metabolitic Product of Penicillium cincerascens Biourge. Biochem. J. 41, 569 (1947).Google Scholar
  81. 81.
    Plimmer, J. R.: The Structure of Carolic Acid. J. Org. Chem. 29, 511 (1964).Google Scholar
  82. 82.
    Gudgeon, J. A., J. S. E. Holker, and T. J. Simpson: Use of Singly and Doubly Labelled 13C-Acetate in the Elucidation of the Structures and Biosynthesis of Multicolic and Multicolosic Acids, New Tetronic Acids from Penicillium multicolor. Chem. Commun. 636 (1974).Google Scholar
  83. 83.
    Cafieri, F., E. Fattorusso, C. Santacroce, and L. Minale: Fasciculatin, a Novel Sesterterpene from the Sponge Ircinia fasciculata. Tetrahedron 28, 1579 (1972).Google Scholar
  84. 84.
    Cimino, G., S. de Stefano, L. Minale, and E. Fattorusso: Ircinin-1 and -2, Linear Sesterterpenes from the Marine Sponge Ircinia oros. Tetrahedron 28, 333 (1972).Google Scholar
  85. 85.
    Faulkner, D. J.: Variabilin, an Antibiotic from the Sponge, Ircinia variabilis. Tetrahedron Letters 3821 (1973).Google Scholar
  86. 86.
    Rothberg, I., and P. Shubiak: The Structure of some Antibiotics from the Sponge Ircinia strobilina. Tetrahedron Letters 769 (1975).Google Scholar
  87. 87.
    Hansel, R., and A. Pelter: Cinnamylidenbutenolide aus Piper sanctum. Phytochemistry 10, 1627 (1971).Google Scholar
  88. 88.
    Hansel, R., and A. Pelter: Epoxipiperolid aus Piper sanctum. Z. Naturforsch. 27b, 1186 (1972).Google Scholar
  89. 89.
    Shaw, E.: A Synthesis of Protoanemonin. The Tautomerism of Acetylacrylic Acid, and of Penicillic Acid. J. Amer. Chem. Soc. 68, 2510 (1946).Google Scholar
  90. 90.
    Grundmann, C., and E. Kober: An Improved Synthesis of Protoanemonin. J. Amer. Chem. Soc. 77, 2332 (1955).Google Scholar
  91. 91.
    Walton, H. M.: Potential Antimicrobial Agents 11. 4-Hydroxy-2,4-alkadienoic Acid y-Lactones. J. Qrg. Chem. 22, 312 (1957).Google Scholar
  92. 92.
    Volhard, J., and F. Henke: Uber die Derivate des Diphenylketipinsaure-dinitrils oder Oxalylbisbenzylcyaniirs. Ann. chimie. 282, 45 (1894).Google Scholar
  93. 93.
    Mittal, O. P., and T. R. Seshadri: Synthesis of Leprapinic Acid and Constitution of Pinastric Acid. J. Chem. Soc. (London) 1734 (1956).Google Scholar
  94. 94.
    Grover, P. K., and T. R. Seshadri: Preparation and Constitution of Isopinastric Acid. Tetrahedron 4, 105 (1958).Google Scholar
  95. 95.
    Asano, M., and S. Huziwara: Lichen Pigments of the Pulvinic Acid Series. VI. Synthesis of Atromentinic Acid. J. Pharmac. Soc. Japan 59, 675 (1939).Google Scholar
  96. 96.
    Sutton, B. M.: 4-Cyclohexylvulpinic Acid Derivatives. U.S. 3,752.829. Chem. Abstr. 79,115428u (1973).Google Scholar
  97. 97.
    Sutton, B. M.: Phenylvulpinic Acid Derivatives. U.S. 3,780,065. Chem. Abstr. 80, 82624v (1974).Google Scholar
  98. 98.
    Sutton, B. M.: Substituted 2,5-Diphenyl-3,4,6-trihydroxy Δ2,4-Hexadienoic Acid Lactones (1,4). U.S. 3,772,341. Chem. Abstr. 80, 133047u(1974).Google Scholar
  99. 99.
    Sutton, B. M.: Pyridyl Ketipate Lactones and Derivatives. U. S. 3,816,440. Chem. Abstr. 81, 91365j (1974).Google Scholar
  100. 100.
    Sutton, B. M.: 4-Cyclohexylvulpinic Acid Derivatives in the Treatment of Arthritis. U.S. 3,821,397. Chem. Abstr. 81, 105256p (1974).Google Scholar
  101. 101.
    Sutton, B. M.: 3,4,6-Trihydroxy-2,5-Diphenyl-2,4-hexadienoic acid y-Lactones in the treatment of Arthritis. U. S. 3,821,398. Chem. Abstr. 81, 120257h (1974).Google Scholar
  102. 102.
    Sutton, B. M.: Pyridyl Ketipate Lactones and Derivatives in the treatment of arthritis. U.S. 3,818,092. Chem. Abstr. 81, 91367m (1974).Google Scholar
  103. 103.
    Weinstock, J.: Thiopulvinic Acid Derivatives. U.S. 3,780,064. Chem. Abstr. 80, 95710v (1974).Google Scholar
  104. 104.
    Foden, F. R., and D. M. O’Mant: 2-[α-(Methoxycarbonyl)benzylidene]-4- phenyl- 3 - hydroxy - 5 - oxo- 2,5 -dihydrofurans. Brit. 1,335,269. Chem. Abstr. 80, 47828 t (1974).Google Scholar
  105. 105.
    Foden, F. R., J. McCormick, and D. M. O’Mant: Antiinflammatory, analgesic and antipyretic 2-[a-(methoxycarbonyl)benzylidene]-4-phenyl-3-hydroxy-5-oxo-2,5- dihydrofuran derivatives. Brit. 1,358,382. Chem. Abstr. 81, 120438t (1974).Google Scholar
  106. 106.
    Weinstock, J., J. E. Blank, and B. M. Sutton: Preparation of Some Thiovulpinic Acids. J. Org. Chem. 39, 2454 (1974).Google Scholar
  107. 107.
    Eisner, U., J. A. Elvidge, and R. P. Linstead: Unsaturated Lactones and Related Substances. Part V. Dihydro-β-ketomuconic Acid and Carboxy-lactones of the Protoanemonin Type. J. Chem. Soc. (London) 1501 (1951).Google Scholar
  108. 108.
    Bell, I., E. R. H. Jones, and M. C. Whiting: Researches on Acetylenic Compounds. Part LXI. The Synthesis of Three Polyacetylenic Esters. J. Chem. Soc. (London) 1313 (1958).Google Scholar
  109. 109.
    Bohlmann, F., and R. Reinecke: Synthese des Thioenolatherbutenolids aus Anthemis rigescens Willd. Chem. Ber. 99, 3437 (1966).Google Scholar
  110. 110.
    Serratosa, F.: An Acetylenic Approach to Patulin Derivatives. Tetrahedron 16, 185 (1961).Google Scholar
  111. 111.
    Castaner, J., and J. Pascual: Isomerisation of Phenylpropargylidenemalonic acid to γ-Benzylidene-α-carboxybutenolide. J. Chem. Soc. (London) 3962 (1958).Google Scholar
  112. 112.
    Fleming, I., and J. Harley-Mason: Enol Elimination Reactions. Part II. A New Synthesis of Tetronic Acids. J. Chem. Soc. (London) 4778 (1963).Google Scholar
  113. 113.
    Mulholland, T. P. C., R. Foster, and D. B. Haydock: A Synthesis of Tetronic Acid [Furan-2(3//),4(5i/)-dione] an(i three Analogues. J. Chem. Soc. Perkin I (London) 1225 (1972).Google Scholar
  114. 114.
    Conradie, W. J., C. F. Garbers, and P. S. Steyn: Oxidation of 3-Methylbut-2-enolide to ds-β-Formylcrotonic Acid. J. Chem. Soc. (London) 594 (1964).Google Scholar
  115. 115.
    Corrie, J. E. T.: A Facile Synthesis of Ylidenebutenolides. Tetrahedron Letters 4873 (1971).Google Scholar
  116. 116.
    Howe, R. K.: (E)-3-Benzylidenephthalides. J. Org. Chem. 38, 4164 (1973).Google Scholar
  117. 117.
    Knight, D. W., and G. Pattenden: Total Synthesis of the Acetylenic Sesquiterpene Freelingyne. Chem. Commun. 188, (1974).Google Scholar
  118. 118.
    Knight, D. W., and G. Pattenden: Synthesis of Freelingyne, an Acetylenic Sesquiterpene from Eremophila freelingii. J. Chem. Soc. Perkin I, 641 (1975).Google Scholar
  119. 119.
    Okazaki, M., and A. Yamaguchi: Modified Wittig Reaction III, Preparation and Some Reactions of Diphenyl 6-Nitrophthalide-3-phosphonate. Nippon Kagaku Kaishi, 110 (1973). Chem. Abstr. 78, 84494k (1973).Google Scholar
  120. 120.
    Weiss, R.: Benzalphthalide. Org. Synth. Coll. 2, 61 (1943).Google Scholar
  121. 121.
    Hrnciar, P.: Phthalides and 1,3-Indandiones. XVI. Preparation of 4-Arylmethylene- cinchomeronides and 2-aryl-5-aza-l,3-indandiones. Chem. Zvesti 19, 360 (1965). Chem. Abstr. 63, 5616d(1965).Google Scholar
  122. 122.
    Hrnciar, P., and D. Joniak: Phthalides and 1,3-Indandiones. XXI. Perkin Synthesis of 7-Nitro-3-benzalphthalide and 4-Nitro-3-benzalphthalide; their Reduction and Conversion into 4-Acetamino-2-phenylindan-l,3-dione. Chem Zvesti 20, 336 (1966). Chem. Abstr. 65, 8832h (1966).Google Scholar
  123. 123.
    Hrnciar, P., and L. Kuruc: Phthalides and 1,3-Indandiones. XXVIII. Preparation of 5- and 6-Substituted 3-Benzalphthalides by the Perkin Reaction. Chem. Zvesti 21, 267 (1967). Chem. Abstr. 67, 73304v (1967).Google Scholar
  124. 124.
    Sigal, M. V., P. Marchini, and B. L. Poet: Phthalazine Derivatives. U.S. 3,274,185. Chem. Abstr. 65, 18600c (1966).Google Scholar
  125. 125.
    Horeau, A., and J. Jacques: Recherches dans la série des isocoumarines. Bull. Soc. Chim. France 53 (1948).Google Scholar
  126. 126.
    Bergmann, E. D.: Fulvenes and Thermochromic Ethylenes. Part 30. Experiments in the 2,3-Diarylindone Series. J. Org. Chem. 21, 461 (1956).Google Scholar
  127. 127.
    Mowry, D. T., E. L. Ringwald, and M. Renoll: Vinyl Aromatic Compounds. VI. Alkylidenephthalides and Related Compounds. J. Amer. Chem. Soc. 71, 120 (1949).Google Scholar
  128. 128.
    Berti, G.: Stereoisomers of Benzalphthalide. Gazz. chim. ital. 86, 655 (1956). Chem. Abstr. 52, 1958a (1958).Google Scholar
  129. 129.
    Boldingh, J., G. Lardelli, P. Róele, G. Dijkstra, P. Haverkamp-Begemann, P. D. Harkes, and A. S. M. Van der Zijden: Dihydrofuranone Derivatives. Ger. 1,072,629. Chem. Abstr. 55, 19949 (1961).Google Scholar
  130. 130.
    Boldingh, J., G. Dijkstra, P. Roele, P. Haverkamp-Begemann, P. D. Harkes, G. Lardelli, and A. S. M. Van der Zijden: Lactones and Their Use as Flavouring Agents. Brit. 893,321. Chem. Abstr. 57, 9670c (1962).Google Scholar
  131. 131.
    Lardelli, G., P. Haverkamp-Begemann, P. D. Harkes, and A. S. M. Van der Zijden: Lactonals. Brit. 893,322. Chem. Abstr. 57, 9672h (1962).Google Scholar
  132. 132.
    Knight, D. W.: Natural Butenolides, Ph. D. Thesis, University of Nottingham, 1975.Google Scholar
  133. 133.
    Chopard, P. A., R. F. Hudson, and R. J. G. Searle: The Reaction of Stable Phosporanes with Phthalic Anhydride; a Case of cis-trans Isomerism. Tetrahedron Letters 2357(1965).Google Scholar
  134. 134.
    Ingham, C. F., R. A. Massy-Westropp, G. D. Reynolds, and W. D. Thorpe: A Synthesis of Enol-Lactones. Aust. J. Chem. 28, 2499 (1975).Google Scholar
  135. 135.
    Ingham, C. F., R. A. Massy-Westropp, and G. D. Reynolds: A Synthesis of Freelingyne. Aust. J. Chem. 27, 1477 (1974).Google Scholar
  136. 136.
    Begley, M. J., D. W. Knight, and G. Pattenden: Regioselective Nucleophilic Additions to Unsymmetrically Substituted Maleic Anhydrides. Tetrahedron Letters 4279 (1975). and unpublished work.Google Scholar
  137. 137.
    Kogl, F., and H. Becker: Untersuchungen über Pilzfarbstoffe. VI. Die Konstitution des Atromentins. Ann. Chimie 465, 211 (1928).Google Scholar
  138. 138.
    Wikholm, R. J., and H. W. Moore: Dimethyl Sulphoxide-Acetic Anhydride Oxidative Rearrangements of Hydroxyterphenylquinones. A Possible Biosynthetic Model. J. Amer. Chem. Soc. 94, 6152 (1972).Google Scholar
  139. 139.
    Cain, B. F.: Potential Anti-tumour Agents. Part II. Polyporic Acid Series. J. Chem. Soc. (London) 356 (1963).Google Scholar
  140. 140.
    Frank, R. L., G. R. Clark, and J. N. Coker: The Synthesis of Vulpinic Acid from Polyporic Acid. J. Amer. Chem. Soc. 72, 1824 (1950).Google Scholar
  141. 141.
    Karrer, P., and L. Schneider: Oxydation von o-Dicarbonylverbindungen durch Persäuren. Helv. Chim. Acta 30, 859 (1947).Google Scholar
  142. 142.
    Karrer, P., and E. Testa: Oxydativer Abbau des Tetrachlor-o-benzochinons mit Perphtalsäure. Untersuchung der Oxydationsprodukte. Helv. Chim. Acta 32,1019(1949).Google Scholar
  143. 143.
    Karrer, P., and Th. Hohl: Abbau des Tetrabrom-o-benzochinons durch Perphtal­säure zum α,β,δ-Tribrommuconsäure-γ-Lacton und dessen weitere Umsetzungs­produkte. Helv. Chim. Acta 32, 1028 (1949).Google Scholar
  144. 144.
    Moore, H. W., H. R. Sheldon, D. W. Deters, and R. J. Wikholm: Rearrangements of Azidoquinones V. Stereoselective Acid-Catalyzed Rearrangements of Azidoquinones to y-Cyanoalkylidine-(Cyanoarylidine)Aa’ß-butenolides. J. Amer. Chem. Soc. 92, 1675 (1970).Google Scholar
  145. 145.
    Moore, H. W.: Chemistry of Azido Quinones and Related Compounds. Chem. Soc. Rev. 2, 415 (1973).Google Scholar
  146. 146.
    O’Mant, D. M.: The Preparation and Chemical Properties of 3-Acyl-5-arylidene-4- hydroxy-2,5-dihydro-2-oxothiophens, a New Class of Immunosuppressive Agent. J. Chem. Soc. C. (London) 1501 (1968).Google Scholar
  147. 147.
    Raphael, R. A.: Compounds Related to Penicillic Acid. Part III. Synthesis of Penicillic Acid. J. Chem. Soc. (London) 1508 (1948).Google Scholar
  148. 148.
    Raphael, R. A.: Compounds Related to Penicillic Acid. Part II. Synthesis of Dihydropenicillic Acid. J. Chem. Soc. (London) 805 (1947).Google Scholar
  149. 149.
    Gilman, H., R. A. Franz, A. P. Hewlett, and G. F. Wright: Decomposition of 5-Halogeno-2-furylmethyl Ethers to Benzalcrotonolactones. J. Amer. Chem. Soc. 72, 3 (1950).Google Scholar
  150. 150.
    Yamada, K., Y. Togawa, T. Kato, and Y. Hirata: A Convenient Method for the Preparation of γ-Arylidene-α,β-Unsaturated γ-Lactones. Application to the Synthesis of the Thiophene Lactone obtained from Chamaemelum nobile L. Tetrahedron 27, 5445 (1971).Google Scholar
  151. 151.
    Nilsson, M.: Preparation of 2-Acetylcyclopent-4-ene-l,3-diones from Maleic Anhydrides and Isopropenyl Acetate. Acta. Chem. Scand. 18, 441 (1964).Google Scholar
  152. 152.
    Fowler, J., and S. Seltzer: The Synthesis of Model Compounds for Maleylaceto- acetic Acid. Maleylacetone. J. Org. Chem. 35, 3529 (1970).Google Scholar
  153. 153.
    Sauer, J. C., R. D. Cramer, V. A. Engelhardt, T. A. Ford, H. E. Holmquist, and B. W. Howk: Bifurandione. I. Preparation and Characterization. J. Amer. Chem. Soc. 81, 3677 (1959).Google Scholar
  154. 154.
    Sauer, J. C.: Dilactones from Carbon Monoxide and Acetylenes. U.S. 2,840,570. Chem. Abstr. 53, 4300a (1959).Google Scholar
  155. 155.
    Albanesi, G., and M. Tovaglieri: Reactions between Acetylenic Hydrocarbons and Carbon Monoxide catalyzed by Cobalt Carbonyls. 1. Octatrienediolides. Chim. e. ind. (Milan) 41, 189 (1959). Chem. Abstr. 53, 19872d (1959).Google Scholar
  156. 156.
    Chiusoli, G. P., and L. Cassar: Nickel-catalyzed Reactions of Allyl Halides and Related Compounds. Angew. Chem. int. Edit. 6, 124 (1967).Google Scholar
  157. 157.
    Kui, J., S. Yoshikawa, and J. Furukawa: Carbonylation of Phenylacetylene by Rhodium Carbonyl Chloride. Bull. Chem. Soc. Japan 47, 490 (1974).Google Scholar
  158. 158.
    Linstead, R. P., L. N. Owen, and R. F. Webb: Elimination Reactions of Esters. Part III. Derivatives of Dibasic Polyhydroxy-acids. J. Chem. Soc. (London) 1225 (1953).Google Scholar
  159. 159.
    Ramirez, F., H. Yamanaka, and O. H. Basedow: New Reactions of Phosphite Esters: The Conversion of Phthalic Anhydride into Biphthalyl by Trialkyl Phosphites and into Phthalide-3-phosphonates by Dialkyl Phosphites. J. Amer. Chem. Soc. 83, 173 (1961).Google Scholar
  160. 160.
    Staab, H. A., and J. Ipaktschi: Photochemische Reaktionen des Benzocyclobuten- dions-(1.2). Chem. Ber. 101, 1457 (1968).Google Scholar
  161. 161.
    Eicher, T., and N. Pelz: Zur Chemie des Phenylcyclopropenons. Tetrahedron Letters 1631 (1974).Google Scholar
  162. 162.
    Rao, Y. S., and R. Filler: Chemistry of Lactones: A One-step Synthesis of α-Phenyl- γ-Benzylidene-Δα,β-butenolide. Tetrahedron Letters 1457 (1975).Google Scholar
  163. 163.
    Scott, A. I., L. Zamir, G. T. Phillips, and M. Yalpani: The Biosynthesis of Patulin. Bioorganic Chem. 2, 124 (1973).Google Scholar
  164. 164.
    Scott, A. I., and L. Beadling: Biosynthesis of Patulin. Dehydrogenase and Dioxy- genase Enzymes of Penicillium patulum. Bioorganic Chem. 3, 281 (1974).Google Scholar
  165. 165.
    Forrester, P. I., and G. M. Gaucher: Conversion of 6-Methylsalicylic Acid into Patulin by Penicillium urticae. Biochemistry 11, 1102 (1972).Google Scholar
  166. 166.
    Murphy, G., G. Vogel, G. Krippahl, and F. Lynen: Patulin Biosynthesis. Role of Mixed-Function Oxidases in the Hydroxylation of m-cresol. Eur. J. Phytochem. 49, 443 (1974).Google Scholar
  167. 167.
    Vogel, G., and F. Lynen: 6-Methylsalicylic Acid Synthetase. Methods in Enzymology, Vol. 43, Antibiotics Edit. Hash, J. H., p. 520. Academic Press. 1975.Google Scholar
  168. 168.
    Light, R. J., and G. Vogel: 6-Methylsalicylic Acid (2,6-Cresotic Acid) Decarboxylase. Methods in Enzymology, Vol. 43, Antibiotics, Edit. Hash, J. H., p. 530. Academic Press. 1975.Google Scholar
  169. 169.
    Gaucher, G. M.: m-Hydroxybenzyl Alcohol Dehydrogenase. Methods in Enzymo­logy, Vol. 43, Antibiotics, Edit. Hash, J. H., p. 540. Academic Press. 1975.Google Scholar
  170. 170.
    Mosbach, K.: Die Biosynthese der Orsellinsáure und Penicillinsáure (I). Acta. Chem. Scand. 14, 457 (1960).Google Scholar
  171. 171.
    Bentley, R., and J. G. Keil: Tetronic Acid Biosynthesis in Molds II. Formation of Penicillic Acid in Penicillium cyclopium. J. Biol. Chem. 237, 867 (1962).Google Scholar
  172. 172.
    Al-Rawi, J. M. A., J. A. Elvidge, D. K. Jaiswal, J. R. Jones, and R. Thomas: Use of Tritium Nuclear Magnetic Resonance for the Direct Location of 3H in Bio- synthetically-labelled Penicillic Acid. Chem. Commun. 220 (1974).Google Scholar
  173. 173.
    Seto, H., L. W. Cary, and M. Tanabe: Utilisation of 13C-13C Coupling in Structural and Biosynthetic Studies. IV. Penicillic Acid. J. Antibiotics 27, 558 (1974).Google Scholar
  174. 174.
    Axberg,.K., and S. Gatenbeck: Intermediates in the Penicillic Acid Biosynthesis in Penicillium cyclopium. Acta. Chem. Scand. B29, 749 (1975).Google Scholar
  175. 175.
    Bentley, R., D. S. Bhate, and J. G. Keil: Tetronic Acid Biosynthesis in Molds 1. The Formation of Carlosic and Carolic Acids in Penicillium charlesii. J. Biol. Chem. 237, 859 (1962).Google Scholar
  176. 176.
    Bloomer, J. L., F. E. Kappler, and G. N. Pandey: Biosynthesis of Carolic Acid in Penicillium charlesii: The Intermediate Precursors. Chem. Commun. 243 (1972).Google Scholar
  177. 177.
    Mosbach, K.: On the Biosynthesis of Lichen Substances. Part 2. The Pulvic Acid Derivative Vulpinic Acid. Biochem. Biophys. Res. Commun. 17, 363 (1964).Google Scholar
  178. 178.
    Maass, W. S. G., and A. C. Neish: Lichen Substances II. Biosynthesis of Calycin and Pulvinic Dilactone by the Lichen, Pseudocyphellaria crocata. Cañad. J. Botany 45, 59 (1967).Google Scholar
  179. 179.
    Mosbach, K., H. Guilford, and M. Lindberg: The Terphenyl Quinone Polyporic Acid: Production Isolation and Characterization. Tetrahedron Letters 1645 (1974)Google Scholar
  180. 180.
    Murray, J.: Lichens and Fungi. Part I. Polyporic Acid in Stictae. J. Chem. Soc. (London) 1345 (1952).Google Scholar
  181. 181.
    Bohlmann, F.: Biogenetische Beziehungen der natürlichen Acetylenverbindungen. Fortschritte der Chemie Organischer Naturstoffe, Vol. XXV, p. 1. Wien: Springer. 1967.Google Scholar
  182. 182.
    Kjøsen, H.: Synthetic and Spectroscopic Studies of Carotenoids, The University of Trondheim, Trondheim, 1970.Google Scholar
  183. 183.
    Knight, D. W., and G. Pattenden: Freelingnite, a New Furanosesquiterpene from Eremophila freelingii. Tetrahedron Letters 1115 (1975).Google Scholar
  184. 184.
    Bornowski, H.: Die Struktur des Lasiospermans. Ein neuer Typ von Furansesquiter: penen. Tetrahedron 27, 4101 (1971).Google Scholar
  185. 185.
    Hikino, H., and C. Konno: Furanosesquiterpenoids. Heterocycles 4, 817 (1976).Google Scholar
  186. 186.
    Cimino, G., S. de Stefano, and L. Minale: Polyprenyl Derivatives from the Sponge Ircimia spinosula, 2-Polyprenylbenzoquinones, 2-polyprenylbenzoquinols Prenylated Furans and a C-31-Difuranoterpene. Tetrahedron 28, 1315 (1972).Google Scholar
  187. 187.
    Ríos, T., and S. Pérez: Geranylfarnesol, A New Acyclic C25-Isoprenoid Alcohol isolated from Insect Wax. Chem. Commun. 214 (1969).Google Scholar
  188. 188.
    Cordell, G. A.: The Occurrence, Structure Elucidation and Biosynthesis of the Sesterterpenes. Phytochemistry 13, 2343 (1974).Google Scholar
  189. 189.
    Cimino, G. S., S. de Stefano, and L. Mínale: Oxidized Furanoterpenes from the Sponge Spongia officinalis. Experientia 30, 18 (1974).Google Scholar
  190. 190.
    Hirata, T., and T. Suga: The Biosynthesis of Protoanemonin in Ranunculus glaber Makino. Chem. Letters 637 (1973).Google Scholar
  191. 191.
    Mitsuhashi, H., and M. Nomura: Studies on the Constituents of Umbelliferae Plants. XII: Biogenesis of 3-Butylphthalide. Chem. Pharm. Bull. (Tokyo) 14, 111 (1966).Google Scholar
  192. 192.
    Cook, C. E., L. P. Whichard, M. E. Wall, G. H. Egley, P. Coggan, P. A. Luchan, and A. T. McPhail: Germination stimulants. 2. The Structure of Strigol - a potent seed germination stimulant for Witchweed (Striga lutea Lour). J. Amer. Chem. Soc. 94, 6198 (1972).Google Scholar
  193. 193.
    Johnson, A. W., G. Rosebery, and C. Parker: A Novel Approach to Striga and Orobanche Control using Synthetic Germination Stimulants. Weed Research 16, 223 (1976).Google Scholar
  194. 194.
    Baer, H., M. Holden, and B. C. Seegal: The Nature of the Antibacterial Agent from Anemone Pulsatilla. J. Biol. Chem. 162, 65 (1946).Google Scholar
  195. 195.
    Zechner, L., and H. Wohlmuth: Anemonin and Protoanemonin I. New Methods of Isolation of Anemonin from Ranunculus acer. Scientia Pharm. 22, 74 (1954).Google Scholar
  196. 196.
    Soderberg, U.: Action of Vulpinic Acid. Acta. Physiol. Scand. 27, 97 (1952).Google Scholar
  197. 197.
    Foden, F. R., J. McCormick, and D. M. O’Mant: Vulpinic Acids as Potential Anti-inflammatory Agents. 1. Vulpinic Acids with Substituents in the Aromatic Rings. J. Medic. Chem. 18, 199 (1975).Google Scholar
  198. 198.
    Kobayashi, A., Y. Shibata, and K. Yamashita: A Novel Preparation of 1-Acetoxy- cw-pent-2-en-4-yne: A New Synthetic Route to cis-Dehydromatricaria Ester. Agr. Biol. Chem. 39, 911 (1975), and refs. cited therein.Google Scholar
  199. 199.
    Brown, B. T., O. Johansen, G. F. Katekar, and W. H. F. Sasse: The Effect on Root Geotropism of Certain ortho-Carboxyphenylpropanones. Pestic. Sci. 4, 473 (1973).Google Scholar
  200. 200.
    Jones, J. B., and J. M. Young: Carcinogenicity of Lactones. IV. Alkylation of Analogues of DNA Guanine Groups such as Imidazole, N-Methylimidazole, and Guanosine by a,ß-Unsaturated Acids. Cañad. J. Chem. 48, 1567 (1970).Google Scholar

Copyright information

© Springer-Verlag/Wien 1978

Authors and Affiliations

  • G. Pattenden
    • 1
  1. 1.Department of ChemistryThe UniversityNottinghamUK

Personalised recommendations