The Transposition of Ampicillin Resistance: Nature of Ampicillin Resistant Haemophilus influenzae and Neisseria gonorrhoeae

  • Stanly Falkow
  • Lynn P. Elwell
  • Marilyn Roberts
  • Fred Heffron
  • Ron Gill
Part of the Topics in Infectious Diseases book series (TIDIS, volume 2)


Transposable elements are discrete genetic and physical entities which can move from one replicon to another. This event occurs in recombination-deficient (recA) bacteria where homologous recombination has been eliminated by mutation. Transposable elements include the IS insertion sequences (see P. Starlinger, this volume; H. Seadler, this volume) and transposable antibiotic resistance genes (see P. Bennett, this volume; J. Davies, this volume). In this paper, we shall be concerned with the transposable sequence which includes the determinants for β-lactamase production, the so-called TnA element. The designation TnA is a general term for several independently described transposition elements that carry ampicillin resistance (Apr). At least three distinct elements are known which have been designated Tnl, Tn2 and Tn3; presumably others will be described in future. Most of our discussion concerns the Tn2 transposable element, although it seems fair to assert that all of the transposable ampicillin elements described, thus far, are closely related and possess similar genetic and physical properties.


Transposable Element Haemophilus Influenzae Neisseria Gonorrhoeae Shigella Dysenteriae Enteric Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hedges, R. W., Jacob, A.: Transposition of Ampicillin Resistance from RP4 to Other Replicons. Mol. Gen. Genet. 132, 31–40 (1974).PubMedCrossRefGoogle Scholar
  2. 2.
    Bennett, P. M., Richmond, M. H.: The Transposition of a Discrete Piece of DNA Carrying an Amp Gene Between Replicons in Escherichia coli. J. Bacteriol. 126, 1–6 (1976).PubMedGoogle Scholar
  3. 3.
    Heffron, F., Rubens, C., Falkow, S.: The Translocation of a Plasmid DNA Sequence which Mediates Ampicillin Resistance: Molecular Nature and Specificity of Insertion. Proc. Natl. Acad. Sci. U.S.A. 72, 3623–3627 (1975).PubMedCrossRefGoogle Scholar
  4. 4.
    Kopecko, D. J., Cohen, S. N.: Site-specific recA- Independent Recombination Between Bacterial Plasmids: Involvement of Palindromes at the Recombinational Loci. Proc. Natl. Acad. Sci. U.S.A. 72, 1373–1377 (1975).PubMedCrossRefGoogle Scholar
  5. 5.
    Rubens, C., Heffron, F., Falkow, S.: Transposition of a Plasmid Deoxyribonucleic Acid Sequence that Mediates Ampicillin Resistance: Independence from Host rec Functions and Orientation of Insertion. J. Bacteriol. 128, 425–434 (1976).PubMedGoogle Scholar
  6. 6.
    Heffron, F., Sublett, R., Hedges, R., Jacob, A., Falkow, S.: Origin of the TEM Beta-lactamase Gene Found on Plasmids. J. Bacteriol. 122, 250–256 (1975).PubMedGoogle Scholar
  7. 7.
    Matthew, M., Hedges, R. W.: Analytical Isoelectric Focusing of R factor Determined ß-lactamases: Correlation with Plasmid Compatibility. J. Bacteriol. 125, 713–718 (1976).PubMedGoogle Scholar
  8. 8.
    Heffron, F., Bedinger, P., Champoux, J. J., Falkow, S.: Deletion Affecting the Transposition of an Antibiotic Resistance Gene. Proc. Natl. Acad. Sci. U.S.A. 74, 702–706 (1977).PubMedCrossRefGoogle Scholar
  9. 9.
    Kingsbury, D. T., Helinski, D. R.: DNA Polymerase as a Requirement for the Maintenance of the Bacterial Plasmid Colicinogenic Factor El. Biochem. Biophys. Res. Commun. 41, 1538–1542 (1970).PubMedCrossRefGoogle Scholar
  10. 10.
    Khan, W., Ross, S., Rodriquez, W., Controri, G., Saz, A. K.: Haemophilus influenzae type b Resistant to Ampicillin. A Report of Two Cases. J. Am. Med. Assoc. 229, 298–301 (1974).CrossRefGoogle Scholar
  11. 11.
    Tomek, M. O., Starr, S. E., McGowen, J. E., Terry, P. M., Nakmias, A. J.: Ampicillin-resistant Haemophilus influenzae type b Infection. J. Am. Med. Assoc. 229, 295–297 (1974).CrossRefGoogle Scholar
  12. 12.
    Farrar, W. E., O’Dell, N.: ß-lactamase Activity in Ampicillin-Resistant Haemophilus influenzae. Antimicrob. Agents Chemother. 6, 625–629 (1974).PubMedGoogle Scholar
  13. 13.
    Elwell, L. P., de Graaff, J., Seibert, D., Falkow, S.: Plasmid-linked Ampicillin Resistance in Haemophilus influenzae, type b. Infec. Immun. 12, 404–410.Google Scholar
  14. 14.
    de Graaff, J., Elwell, L. P., Falkow, S.: Molecular Nature of Two BetaLactamase-Specifying Plasmids Isolated from Haemophilus influenzae type b. J. Bacteriol. 126, 439–446 (1976).PubMedGoogle Scholar
  15. 15.
    Dang Van, A., Beith, G., Bouanchaud, D. H.: Résistant Plasmidique à la Tetracycline chez H. influenzae. C. R. Acad. Sci. 280, 1321–1323 (1975).Google Scholar
  16. 16.
    Van Klingeren, J., van Embden, J., Dessens-Kroon, M.: Plasmid-mediated Chloramphenicol Resistance in Haemophilus influenzae. Antimicrob. Agents Chemother. 11, 383–387 (1977).PubMedGoogle Scholar
  17. 17.
    Ashford, W. A., Golash; R. G., Hemming, V. G.: Penicillinase-producing Neisseria gonorrhoeae. Lancet 2, 657–658 (1976).PubMedCrossRefGoogle Scholar
  18. 18.
    Phillips, I.: Beta-Lactamase-Producing Penicillin-Resistant Gonococcus. Lancet 2, 656–657 (1976).PubMedCrossRefGoogle Scholar
  19. 19.
    Percival, A., Corkill, J., Aryo, 0., Rowlands, J., Alergant, C., Ross, E.: Penicillinase-Producing Gonococci in Liverpool. Lancet 2, 1379–1382 (1976).Google Scholar
  20. 20.
    Meyers, J., Sanchez, D., Elwell, L. P., Falkow, S.: A Simple Agarose Gel Electrophoretic Method for the Identification and Characterization of Plasmid Deoxyribonucleic Acid. J. Bacteriol. 127, 1529–1537 (1976).PubMedGoogle Scholar
  21. 21.
    Mayer, L. W., Holmes, K. K., Falkow, S.: Characterization of Plasmid Deoxyribonucleic Acid from Neisseria gonorrhoeae. Infect. Immun. 10, 712–717 (1974).PubMedGoogle Scholar
  22. 22.
    Stiffler, P. W., Lerner, S. A., Bohnhoff, M., Morello, J. A.: Plasmid Deoxyribonucleic Acid in Clinical Isolates of Neisseria gonorrhoeae. J. Bacteriol. 122, 1293–1300 (1975).PubMedGoogle Scholar
  23. 23.
    Elwell, L. P., Roberts, M., Mayer, L. W., Falkow, S.: Plasmid Mediated Beta-Lactamase Production in Neisseria gonorrhoeae. Antimicrob. Agents Chemother. 11, 528–533 (1977).PubMedGoogle Scholar
  24. 24.
    Roberts, M., Falkow, S.: Conjugal Transfer of R Plasmids in Neisseria gonorrhoeae. Nature 226, 630–631 (1977).CrossRefGoogle Scholar
  25. 25.
    Crosa, J. H., Olarte, J., Mata, L. S., Luttropp, L. K., Penaranda, M. E.: Characterization of an R Plasmid Associated with Ampicillin Resistance in Shigella dysenteriae type 1 Strains Isolated in Epidemics. Antimicrob. Agents Chemother. 11, 553–558 (1977).PubMedGoogle Scholar
  26. 26.
    Anderson, E. S., Lewis, M. S.: Characterization of a Transfer Factor Associated with Drug Resistance in Salmonella typhimurium. Nature 208, 843–845 (1965).PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1977

Authors and Affiliations

  • Stanly Falkow
  • Lynn P. Elwell
  • Marilyn Roberts
  • Fred Heffron
  • Ron Gill

There are no affiliations available

Personalised recommendations