Advertisement

Transposable Neomycin Phosphotransferases

  • J. Davies
  • D. Berg
  • R. Jorgensen
  • M. Fiandt
  • T.-S. R. Huang
  • P. Courvalin
  • J. Schloff
Conference paper
Part of the Topics in Infectious Diseases book series (TIDIS, volume 2)

Abstract

Transposable genetic elements are discrete DNA segments with the capacity to move between independent DNA replicons within the cell. The recent discoveries that certain plasmid-borne genes, which confer resistance to antibiotics and to heavy metals, are components of transposable elements has improved our understanding of how plasmids might pick up genes from nonhomologous DNA molecules during their evolution and during the spread of antibiotic resistant infections in hospitals. Table 1 illustrates that many determinants of resistance have already been found in transposable elements. Considerable diversity is seen in this collection of elements: they vary in their DNA sequence arrangement, in the frequency and specificity of transposition, and in the stability of the transposed genes. Some contain known insertion sequences.

Keywords

Transposable Element Inverted Repeat Direct Repeat Resistance Determinant Bacteriophage Lambda 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hedges, R. W., Jacob, A. E.: Transposition of Ampicillin Resistance from RP4 to Other Replicons. Mol. Gen. Genet. 132, 31–40 (1974).PubMedCrossRefGoogle Scholar
  2. 2.
    Reffron, F., Rubbens, C., Falkow, S.: Translocation of a Plasmid DNA Sequence which Mediates Ampicillin Resistance: Molecular Nature and Specificity of Insertion. Proc. Natl. Acad. Sci. U.S.A. 72, 3623–3627 (1975).CrossRefGoogle Scholar
  3. 3.
    Kopecko, D. J., Cohen, S. N.: Site-specific recA-independent Recombination Between Bacterial Plasmids: Involvement of Palindromes at the Recombinational Loci. Proc. Natl. Acad. Sci. U.S.A. 72, 1373–1377 (1975).PubMedCrossRefGoogle Scholar
  4. 4.
    Berg, D. E., Davies, J., Allet, B., Rochaix, J.: Transposition of R-factor Genes to Bacteriophage A. Proc. Natl. A.ad. Sci. U.S.A. 72, 3628–3632 (1975).CrossRefGoogle Scholar
  5. 5.
    Barth, P. T., Datta, N., Hedges, R. W., Grinter, N. J.: Transposition of a Deoxyribonucleic Acid Sequence Encoding Trimethoprim and Streptomycin Resistances from R483 to Other Replicons. J. Bacteriol. 125, 800–810 (1976).PubMedGoogle Scholar
  6. 6.
    Gottesman, M. M., Rosner, J. L.: Acquisition of a Determinant for Chloramphenicol Resistance by Coliphage Lambda. Proc. Natl. Acad. Sci. U.S.A. 72, 5041–5045 (1975).PubMedCrossRefGoogle Scholar
  7. 7.
    Kleckner, N., Chan, R. K., Tye, B. K., Botstein, D.: Mutagenesis by Insertion of a Drug-resistance Element Carrying an Inverted Repetition. J. Mol. Biol. 97, 561 (1975).PubMedCrossRefGoogle Scholar
  8. 8.
    Shapiro, J. A., Sporn, P.: TN402: A New Transposable Element Determining Trimethoprim Resistance that Inserts in Bacteriophage Lambda. J. Bacteriol. 129, 1632–1635 (1977).PubMedGoogle Scholar
  9. 9.
    Stanisch, V. A., Bennett, P. M., Richmond, M. H.: Characterization of a Translocation Unit Encoding Resistance to Mercuric Ions that Occurs on a Non-conjugative Plasmid in Pseudomonas aeruginosa. J. Bacteriol. 129, 1227–1233 (1976).Google Scholar
  10. 10.
    Berg, D. E., Davies, J., Sehloff, J.: unpublished observations.Google Scholar
  11. 11.
    Hedges, R. W., Matthew, M., Smith, D. I., Cresswell, J. M., Jacob, A. E.: Properties of a Transposon Conferring Resistance to Penicillins and Streptomycin. Gene, in press, 1977.Google Scholar
  12. 12.
    For a complete reveiw and description see “DNA Insertion Elements, Plasmids, and Episomes” (eds. Bukhari, A. I., Shapiro, J. A., Adhya, S.), Cold Spring Harbor Laboratory, 1977.Google Scholar
  13. 13.
    Franklin, N. C.: Illegitimate Recombination, in “The Bacteriophage Lambda” (ed. Hershey, A. D. ), Cold Spring Harbor Laboratory, 1971, pp. 175–194.Google Scholar
  14. 14.
    Hershfield, V., Boyer, H. W., Yanofsky, C., Lovett, M. A., Helinski, D. R.: Plasmid ColEl as a Molecular Vehicle for Cloning and Amplification of DNA. Proc. Natl. Acad. Sci. U.S.A. 71, 3455–3459 (1974).PubMedCrossRefGoogle Scholar
  15. 15.
    Cohen, S. N., Chang, A. C. Y., Boyer, H. W., Helling, D. B.: Construction of Biologically Functional Bacterial Plasmids in vitro. Proc. Nat. Acad. Sci. U.S.A. 70, 3240–3244 (1973).CrossRefGoogle Scholar
  16. 16.
    Courvalin, P., Fiandt, M., Davies, J.: DNA Relationships Between Genes Coding for Aminoglycoside-modifying Enzymes from Antibiotic-producing Bacteria and R-plasmids, Microbiology, 1978, in preparation.Google Scholar
  17. 17.
    Matsuhashi, Y., Sawa, T., Takeuchi, T., Umezawa, H.: Immunological Studies of Aminoglycoside-3’-phosphotransferases. J. Antibiotics 29, 1127–1128 (1976).Google Scholar
  18. 18.
    Smith, D. I., Davies, J. E.: A Study of the Neomycin Phosphotransferases: Characterization and Purification, Microbiology, 1978, in preparation.Google Scholar
  19. 19.
    Berg, D. E., in reference 12.Google Scholar
  20. 20.
    Jorgensen, R., Berg, D., Allet, B., Reznikoff, W. S.: In vitro mapping of RNA Polymerase Binding Sites and Antibiotic Resistance Genes in the Transposable Elements Tn5 and Tn10, in preparation.Google Scholar
  21. 21.
    Huang, T.-S R., Crossley, K., Davies, J.: Existence of Inverted Repeated Sequences in Resistance Plasmids from Multiply Antibiotic Resistant Strains of Staphylococcus aureus Nature, in preparation.Google Scholar

Copyright information

© Springer-Verlag/Wien 1977

Authors and Affiliations

  • J. Davies
    • 1
  • D. Berg
    • 2
  • R. Jorgensen
    • 1
  • M. Fiandt
    • 3
  • T.-S. R. Huang
    • 1
  • P. Courvalin
    • 1
  • J. Schloff
    • 1
  1. 1.Department of BiochemistryWashington UniversitySt. LouisUSA
  2. 2.Department of MicrobiologyWashington UniversitySt. LouisUSA
  3. 3.McArdle Laboratory for Cancer ResearchUniversity of Wisconsin-MadisonSt. LouisUSA

Personalised recommendations