Advertisement

Limitations on the Transposition of TnA

  • P. M. Bennett
  • M. K. Robinson
  • M. H. Richmond
Conference paper
Part of the Topics in Infectious Diseases book series (TIDIS, volume 2)

Abstract

In the relatively short space of time since the process of transposition has been defined with some precision (4, 13, 14, 15, 19, 22, 23), the number of transposons known to occur in Gramnegative bacteria has increased dramatically. The initial experiments were all concerned with the ampicillin transposon (TnA, now redesignated Tn1, Tn2, Tn3 — see ref.7), but subsequently units which specify the transposition of trimethoprim and streptomycin resistance (Tn7) (2, 7), tetracycline resistance (Tn10) (7, 11, 18), neomycin and kanamycin resistance (Tn5) (5, 7), chloramphenicol resistance (Tn9) (7, 12), and mercury ion resistance (Tn501) (24) have all been characterised with a varying degree of completeness. In all cases in which the phenomenon of transposition has been investigated in sufficient detail, it is known that the process occurs independently of the host’s classical recombination systems (that is, the process will occur in recA bacteria (2, 4, 11, 12, 14, 18, 19, 22, 24) and results in the acquisition of a discrete piece of DNA by the recipient replicon (2, 4, 5, 12, 14, 18, 19, 22, 23, 24). Thus transposition of TnA normally results in an increase in size of the recipient plasmid of a piece of DNA of molecular weight about 3.2 Mdal.

Keywords

Recombinant Plasmid Resistance Determinant Plasmid Transfer Transfer Frequency Streptomycin Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. 1.
    Anderson, E. S.: The Ecology of Transferable Drug Resistance in the Enterobacteria. Ann. Rev. Microbiol. 22, 131–180 (1968).CrossRefGoogle Scholar
  2. 2.
    Barth, P. J., N. Datta, R. W. Hedges, and J. J. Grinter: Transposition of the Deoxyribonucleic Acid Sequence Encoding Trimethoprim and Streptomycin Resistances From R583 to Other Replicons. J. Bacteriol. 125, 800–810 (1976).PubMedGoogle Scholar
  3. 3.
    Beard, J. P., and J. C. Connolly: Detection of a Protein, Similar to the Sex Pilus Subunit, in the Outer Membrane of Escherichia coli Carrying a Derepressed F-like R Factor. J. Bacteriol. 122, 59–65 (1975).PubMedGoogle Scholar
  4. 4.
    Bennett, P. M., and M. H. Richmond: Translocation of a Discrete Piece of Deoxyribonucleic Acid Carrying an amp Gene Between Replicons in Escherichia coli. J. Bacteriol. 126, 1–6 (1976).PubMedGoogle Scholar
  5. 5.
    Berg, D. E., J. Davies, B. Allet, and J. Rochaize: Transposition of R Factor Genes to Bacteriophage. Proc. Natl. Acad. Sci. U.S.A. 72, 3628–3632 (1975).PubMedCrossRefGoogle Scholar
  6. 6.
    Clewell, D. B.: Nature of ColE1 Plasmid Replication in Escherichia coli in the Presence of Chloramphenicol. J. Bacterial. 110, 667–676 (1972).Google Scholar
  7. 7.
    Cohen, S. N.: Transposable Genetic Elements and Plasmid Evolution. Nature (Lond.) 263, 731–738 (1976).CrossRefGoogle Scholar
  8. 8.
    Curtis, N. A. C., M. H. Richmond: Effect of R-Factor-Mediated Genes on Some Surface Properties of Escherichia coli. Antimicrob. Agents Chemother. 6, 666–671 (1974).PubMedGoogle Scholar
  9. 9.
    Curtis, N.A.C., and M.H. Richmond, and V. Stanisich: R-FactorMediated Resistance Which Does Not Involve a ß-Lactamase. J. Gen. Microbiol. 79, 163–166 (1973).PubMedGoogle Scholar
  10. 10.
    Datta, N., and R. W. Hedges: Trimethoprim Resistance Conferred by Plasmids in Enterobacteriaceae. J. Gen. Microbiol. 72, 349–356 (1972).PubMedGoogle Scholar
  11. 11.
    Foster, T. J., T. G. B. Howe, and M. H. Richmond: Translocation of the Tetracycline Resistance Determinant From R100–1 to the Escherichia coli K-12 Chromosome. J. Bacteriol. 124, 1153–1158 (1975).PubMedGoogle Scholar
  12. 12.
    Gottesman, M. M., and J. L. Rosner: Acquisition of a Determinant for Chloramphenicol Resistance by Coliphage Lambda. Proc. Natl. Acad. Sci. U.S.A. 72, 5041–5045 (1975).PubMedCrossRefGoogle Scholar
  13. 13.
    Hedges, R. W., and A. E. Jacob: Transposition of Ampicillin Resistance from RP4 to Other Replicons. Molec. Gen. Genet. 132, 31–40 (1974).PubMedCrossRefGoogle Scholar
  14. 14.
    Heffron, F., C. Rubens, and S. Falkow: Translocation of a Plasmid DNA Sequence Which Mediates Ampicillin Resistance: Molecular Nature and Specificity of Insertion. Proc. Natl. Acad. Sci. U.S.A. 72, 3623–3627 (1975).PubMedCrossRefGoogle Scholar
  15. 15.
    Heffron, F., R. Sublett, R. W. Hedges, A. Jacob, and S. Falkow: Origin of the TEM Beta-Lactamase Gene Found on Plasmids. J. Bacteriol. 122, 250–256 (1975).PubMedGoogle Scholar
  16. 16.
    Jobanputra, R. S., and N. Datta: Trimethoprim Resistance Factors in Enterobacteria From Clinical Specimens. J. Med. Microbiol. 7, 169–177 (1974).PubMedCrossRefGoogle Scholar
  17. 17.
    Kingsbury, D. T., and D. R. Helinski: DNA Polymerases as a Requirement for the Maintenance of the Bacterial Plasmid Colicinogenic Factor El. Biochem. Biophys. Res. Comm. 41, 1538–1544 (1970).PubMedCrossRefGoogle Scholar
  18. 18.
    Kleckner, N., R. K. Chan, B. Tye, and D. Botstein: Mutagenesis by Insertion of a Drug-Resistance Element Carrying an Inverted Repetition. J. Mol. Biol. 97, 561–575 (1975).PubMedCrossRefGoogle Scholar
  19. 19.
    Kopecko, D. J., and S. N. Cohen: Site-Specific recA–Independent Recombination Between Bacterial Plasmids: Involvement of Palindromes at the Recombinational Loci. Proc. Natl. Acad. Sci. U.S.A. 72, 1373–1377 (1975).PubMedCrossRefGoogle Scholar
  20. 20.
    Richmond, M. H., and R. B. Sykes: The Chromosomal Integration of a 8-Lactamase Gene Derived From the P-Type R-Factor RP1 in Escherichia coli. Genet. Res., Camb. 20, 231–237 (1972).CrossRefGoogle Scholar
  21. 21.
    Robinson, M. K., P. M. Bennett, and M. H. Richmond: Inhibition of TnA Translocation by TnA. J. Bacteriol. 129, 407–414 (1977).PubMedGoogle Scholar
  22. 22.
    Rubens, C., F. Heffron, and S. Falkow: Transposition of a Plasmid Deoxyribonucleic Acid Sequence That Mediates Ampicillin Resistance: Independence from Host rec Functions and Orientation of Insertion. J. Bacteriol. 128, 425–434 (1976).PubMedGoogle Scholar
  23. 23.
    So, M., R. Gill, and S. Falkow: The Generation of a ColE1-Apr Cloning Vehicle Which Allows Detection of Inserted DNA. Molec. Gen. Genet. 142, 239–249 (1975).PubMedCrossRefGoogle Scholar
  24. 24.
    Stanisich, V. A., P. M. Bennett, and M.H. Richmond: Characterisation of a Translocation Unit Encoding Resistance to Mercuric Ions That Occurs on a Non-Conjugative Plasmid in Pseudomonas aeruginosa. J. Bacteriol. (in press).Google Scholar

Copyright information

© Springer-Verlag/Wien 1977

Authors and Affiliations

  • P. M. Bennett
  • M. K. Robinson
  • M. H. Richmond

There are no affiliations available

Personalised recommendations