Skip to main content

Limitations on the Transposition of TnA

  • Conference paper
R-Factors: Their Properties and Possible Control

Part of the book series: Topics in Infectious Diseases ((TIDIS,volume 2))

Abstract

In the relatively short space of time since the process of transposition has been defined with some precision (4, 13, 14, 15, 19, 22, 23), the number of transposons known to occur in Gramnegative bacteria has increased dramatically. The initial experiments were all concerned with the ampicillin transposon (TnA, now redesignated Tn1, Tn2, Tn3 — see ref.7), but subsequently units which specify the transposition of trimethoprim and streptomycin resistance (Tn7) (2, 7), tetracycline resistance (Tn10) (7, 11, 18), neomycin and kanamycin resistance (Tn5) (5, 7), chloramphenicol resistance (Tn9) (7, 12), and mercury ion resistance (Tn501) (24) have all been characterised with a varying degree of completeness. In all cases in which the phenomenon of transposition has been investigated in sufficient detail, it is known that the process occurs independently of the host’s classical recombination systems (that is, the process will occur in recA bacteria (2, 4, 11, 12, 14, 18, 19, 22, 24) and results in the acquisition of a discrete piece of DNA by the recipient replicon (2, 4, 5, 12, 14, 18, 19, 22, 23, 24). Thus transposition of TnA normally results in an increase in size of the recipient plasmid of a piece of DNA of molecular weight about 3.2 Mdal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Anderson, E. S.: The Ecology of Transferable Drug Resistance in the Enterobacteria. Ann. Rev. Microbiol. 22, 131–180 (1968).

    Article  CAS  Google Scholar 

  2. Barth, P. J., N. Datta, R. W. Hedges, and J. J. Grinter: Transposition of the Deoxyribonucleic Acid Sequence Encoding Trimethoprim and Streptomycin Resistances From R583 to Other Replicons. J. Bacteriol. 125, 800–810 (1976).

    PubMed  CAS  Google Scholar 

  3. Beard, J. P., and J. C. Connolly: Detection of a Protein, Similar to the Sex Pilus Subunit, in the Outer Membrane of Escherichia coli Carrying a Derepressed F-like R Factor. J. Bacteriol. 122, 59–65 (1975).

    PubMed  CAS  Google Scholar 

  4. Bennett, P. M., and M. H. Richmond: Translocation of a Discrete Piece of Deoxyribonucleic Acid Carrying an amp Gene Between Replicons in Escherichia coli. J. Bacteriol. 126, 1–6 (1976).

    PubMed  CAS  Google Scholar 

  5. Berg, D. E., J. Davies, B. Allet, and J. Rochaize: Transposition of R Factor Genes to Bacteriophage. Proc. Natl. Acad. Sci. U.S.A. 72, 3628–3632 (1975).

    Article  PubMed  CAS  Google Scholar 

  6. Clewell, D. B.: Nature of ColE1 Plasmid Replication in Escherichia coli in the Presence of Chloramphenicol. J. Bacterial. 110, 667–676 (1972).

    CAS  Google Scholar 

  7. Cohen, S. N.: Transposable Genetic Elements and Plasmid Evolution. Nature (Lond.) 263, 731–738 (1976).

    Article  CAS  Google Scholar 

  8. Curtis, N. A. C., M. H. Richmond: Effect of R-Factor-Mediated Genes on Some Surface Properties of Escherichia coli. Antimicrob. Agents Chemother. 6, 666–671 (1974).

    PubMed  CAS  Google Scholar 

  9. Curtis, N.A.C., and M.H. Richmond, and V. Stanisich: R-FactorMediated Resistance Which Does Not Involve a ß-Lactamase. J. Gen. Microbiol. 79, 163–166 (1973).

    PubMed  CAS  Google Scholar 

  10. Datta, N., and R. W. Hedges: Trimethoprim Resistance Conferred by Plasmids in Enterobacteriaceae. J. Gen. Microbiol. 72, 349–356 (1972).

    PubMed  CAS  Google Scholar 

  11. Foster, T. J., T. G. B. Howe, and M. H. Richmond: Translocation of the Tetracycline Resistance Determinant From R100–1 to the Escherichia coli K-12 Chromosome. J. Bacteriol. 124, 1153–1158 (1975).

    PubMed  CAS  Google Scholar 

  12. Gottesman, M. M., and J. L. Rosner: Acquisition of a Determinant for Chloramphenicol Resistance by Coliphage Lambda. Proc. Natl. Acad. Sci. U.S.A. 72, 5041–5045 (1975).

    Article  PubMed  CAS  Google Scholar 

  13. Hedges, R. W., and A. E. Jacob: Transposition of Ampicillin Resistance from RP4 to Other Replicons. Molec. Gen. Genet. 132, 31–40 (1974).

    Article  PubMed  CAS  Google Scholar 

  14. Heffron, F., C. Rubens, and S. Falkow: Translocation of a Plasmid DNA Sequence Which Mediates Ampicillin Resistance: Molecular Nature and Specificity of Insertion. Proc. Natl. Acad. Sci. U.S.A. 72, 3623–3627 (1975).

    Article  PubMed  CAS  Google Scholar 

  15. Heffron, F., R. Sublett, R. W. Hedges, A. Jacob, and S. Falkow: Origin of the TEM Beta-Lactamase Gene Found on Plasmids. J. Bacteriol. 122, 250–256 (1975).

    PubMed  CAS  Google Scholar 

  16. Jobanputra, R. S., and N. Datta: Trimethoprim Resistance Factors in Enterobacteria From Clinical Specimens. J. Med. Microbiol. 7, 169–177 (1974).

    Article  PubMed  CAS  Google Scholar 

  17. Kingsbury, D. T., and D. R. Helinski: DNA Polymerases as a Requirement for the Maintenance of the Bacterial Plasmid Colicinogenic Factor El. Biochem. Biophys. Res. Comm. 41, 1538–1544 (1970).

    Article  PubMed  CAS  Google Scholar 

  18. Kleckner, N., R. K. Chan, B. Tye, and D. Botstein: Mutagenesis by Insertion of a Drug-Resistance Element Carrying an Inverted Repetition. J. Mol. Biol. 97, 561–575 (1975).

    Article  PubMed  CAS  Google Scholar 

  19. Kopecko, D. J., and S. N. Cohen: Site-Specific recA–Independent Recombination Between Bacterial Plasmids: Involvement of Palindromes at the Recombinational Loci. Proc. Natl. Acad. Sci. U.S.A. 72, 1373–1377 (1975).

    Article  PubMed  CAS  Google Scholar 

  20. Richmond, M. H., and R. B. Sykes: The Chromosomal Integration of a 8-Lactamase Gene Derived From the P-Type R-Factor RP1 in Escherichia coli. Genet. Res., Camb. 20, 231–237 (1972).

    Article  CAS  Google Scholar 

  21. Robinson, M. K., P. M. Bennett, and M. H. Richmond: Inhibition of TnA Translocation by TnA. J. Bacteriol. 129, 407–414 (1977).

    PubMed  CAS  Google Scholar 

  22. Rubens, C., F. Heffron, and S. Falkow: Transposition of a Plasmid Deoxyribonucleic Acid Sequence That Mediates Ampicillin Resistance: Independence from Host rec Functions and Orientation of Insertion. J. Bacteriol. 128, 425–434 (1976).

    PubMed  CAS  Google Scholar 

  23. So, M., R. Gill, and S. Falkow: The Generation of a ColE1-Apr Cloning Vehicle Which Allows Detection of Inserted DNA. Molec. Gen. Genet. 142, 239–249 (1975).

    Article  PubMed  CAS  Google Scholar 

  24. Stanisich, V. A., P. M. Bennett, and M.H. Richmond: Characterisation of a Translocation Unit Encoding Resistance to Mercuric Ions That Occurs on a Non-Conjugative Plasmid in Pseudomonas aeruginosa. J. Bacteriol. (in press).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Springer-Verlag/Wien

About this paper

Cite this paper

Bennett, P.M., Robinson, M.K., Richmond, M.H. (1977). Limitations on the Transposition of TnA. In: Drews, J., Högenauer, G. (eds) R-Factors: Their Properties and Possible Control. Topics in Infectious Diseases, vol 2. Springer, Vienna. https://doi.org/10.1007/978-3-7091-8501-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-8501-8_5

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-8503-2

  • Online ISBN: 978-3-7091-8501-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics