Molecular Cloning of DNA from the R-Plasmid R6K

  • Jorge H. Crosa
  • Linda K. Luttropp
  • Stanley Falkow
Conference paper
Part of the Topics in Infectious Diseases book series (TIDIS, volume 2)


Bacterial plasmids are non-essential in the sense that they may be lost from a cell under most circumstances without affecting cell viability. As adequately documented elsewhere in this volume, the presence of a plasmid may confer upon a host cell the capacity to survive in an adverse environment or to better compete with organisms of the same or related species. Plasmids have a range of molecular mass from 0.5 × 106 daltons to greater than 150 × 106 daltons and vary in their mol fraction guanine and cytocine content from 0.39 to 0.72. Consequently it is as difficult to make generalizations about the basic biology of plasmids as it is about the microorganisms in which their life cycle takes place. Nonetheless at the molecular level one can make the generalization that plasmids are double-stranded covalently closed molecules of DNA. In addition plasmids generally fall into two molecular classes. One class, best typified by ColEl, is of relatively small size (generally less than 10 × 106 daltons in mass), non-conjugative and is generally found as a multi-copy pool within its host cells. The other class, best typified by the classical sex factor, F, is of relatively large molecular mass (generally greater than 30 × 106 daltons), usually conjugative and present in a limited number of copies per host cell. One (but certainly not the only) exception to these general molecular properties of plasmids is R6K.


EcoRI Site Replication Function Bacterial Plasmid Superhelical Density Superhelical Turn 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berk, A. J., and Clayton, D. A. Mechanisms of mitochondrial DNA replication in mouse L-cells: Asynchronous replication of strands, segregation of circular daughter molecules, aspects of topology and turnover of an initiation sequence. J. Mol. Biol., 86, 801–824 (1974).PubMedCrossRefGoogle Scholar
  2. 2.
    Berk, A. J., and Clayton, D. A. Mechanisms of mitochondrial DNA replication in mouse L-cells: Topology of circular daughter molecules and dynamics of catenated oligomer formation. J. Mol. Biol., 100, 85–102 (1976).PubMedCrossRefGoogle Scholar
  3. 3.
    Betlach, M. C., Hershfield, V., Chow, L., Brown, W., Goodman, H. M., and Boyer, H. W. A restriction endonuclease analysis of the bacterial plasmid controlling the EcoRI restriction and modification of DNA. Fed. Proc., 35, 2037–2043 (1976).PubMedGoogle Scholar
  4. 4.
    Bolivar, F., Rodriquez, R., Betlach, M., and Boyer, H. W. Construction and characterization of new cloning vehicles. Gene, in press (1977).Google Scholar
  5. 5.
    Bolivar, F., Rodriquez, R. L., Greene, P. J., Betlach, M. C..Heymeker, H. L., Boyer, H. W., Crosa, J. H., and Falkow, S. A multipurpose cloning system: Construction and characterization. Gene, in press (1977).Google Scholar
  6. 6.
    Bourgaux, P., and Bourgaux-Ramoisy, D. Is a specific protein responsible for the supercoiling of polyoma DNA? Nature, 235, 105–107 (1972).PubMedCrossRefGoogle Scholar
  7. 7.
    Cabello, F., Timis, K., and Cohen, S. N. Replication control in a composite plasmid constructed by in vitro linkage of two distinct repli-cons. Nature, 259, 285–290 (1976).PubMedCrossRefGoogle Scholar
  8. 8.
    Champoux, J. Evidence for an intermediate with a single-strand break in the reaction catalyzed by the DNA untwisting enzyme. Proc. Nat. Acad. Sci. U.S.A., 73, 3488–3491 (1976).CrossRefGoogle Scholar
  9. 9.
    Champoux, J., and Dulbecco, R. An activity from mammalian cells that untwists superhelical DNA. A possible swivel for DNA replication. Proc. Nat. Acad. Sci. U.S.A., 69, 143–146 (1972).CrossRefGoogle Scholar
  10. 10.
    Cohen, S. N. and Miller, C. A. Non-chromosomal antibiotic resistance in bacteria. II. Molecular nature of R factors isolated from Proteus mirabilis and Escherichia coli. J. Mol. Biol., 50, 671–687 (1970).PubMedCrossRefGoogle Scholar
  11. 11.
    Crosa, J. H., Luttropp, L. K., Heffron, F., and Falkow, S. Two replication initiation sites on R plasmid DNA. Mol. Gen. Genet. 140, 39–50 (1975).CrossRefGoogle Scholar
  12. 12.
    Crosa, J. H., Luttropp, L. K., and Falkow, S. Mode of replication of the conjugative R-plasmid RSF1040 in Escherichia coli. J. Bacteriol., 126, 454–466 (1976).PubMedGoogle Scholar
  13. 13.
    Crosa, J. H., Luttropp, L, K., and Falkow, S. Covalently closed circular DNA molecules deficient in superhelical density as intermediates in the plasmid life cycle. Nature, 261, 561–519 (1976).CrossRefGoogle Scholar
  14. 14.
    Eason, R., and Vinograd, J. Superhelix density of intracellular Simian Virus 40 deoxyribonucleic acid. J. Virol, 7, 1–7 (1971).PubMedGoogle Scholar
  15. 15.
    Espejo, R., Espejo-Canelo, F., and Sinsheimer, R. L. A difference between intracellular and viral supercoiled PM2 DNA. J. Mol. Biol. 56, 623–626 (1971).PubMedCrossRefGoogle Scholar
  16. 16.
    Falkow, S., Tompkins, L. S., Silver, R. P., Guerry, P., and LeBlanc, D. S. The replication of R-factor DNA in Escherichia coli K-12 following conjugation. Ann. N. Y. Acad. Sci., 182, 153–171 (1971).PubMedCrossRefGoogle Scholar
  17. 17.
    Gellert, M., Mizuuchi, K., O’Dea, M. H., and Nash, H. A. DNA gyrase: the enzyme that introduces superhelical turns into DNA. Proc. Nat. Acad. Sci. U.S. 73, 3872–3876 (1976).CrossRefGoogle Scholar
  18. 18.
    Gellert, M., O’Dea, H. H., Itoh, T., and Tomizawa, J. Novobiocin and coumermycin inhibit DNA supercoiling catalyzed by DNA gyrase. Proc. Nat. Acad. Sci. U.S. 73, 4474–4478 (1976).CrossRefGoogle Scholar
  19. 19.
    Herschfield, V., Boyer, H. W., Chow, L., and Helinski, D. R. Characterization of a mini-colEI plasmid. J. Bacteriol. 126, 447–453 (1976).Google Scholar
  20. 20.
    Kontomichalou, P., Mitani, M., and Clowes, R. C. Circular R-factor molecules controlling penicillinase synthesis, replicating under either relaxed or stringent control. J. Bacteriol. 104, 34–55 (1970).PubMedGoogle Scholar
  21. 21.
    Kopecko, D. J.4 and Punch, J. D. Regulation of R-factor replication in Proteus mirabilis. Ann. N. Y. Acad. Sci., 182, 207–216 (1971).Google Scholar
  22. 22.
    Lovett, M., Sparks, R. M., and Helinski, D. R. Bidirectional replication of plasmid R6K DNA in Escherichia coli; correspondence between origin of replication and position of single-strand break in relaxed complex. Proc. Natl. Acad. Sci. U.S.A., 73, 2905–2909 (1975).CrossRefGoogle Scholar
  23. 23.
    Pritchard, R. H., Barber, P. T., and Collins, J. Control of DNA synthesis in bacteria. XIX Symp. Soc. Gen. Microbiol., 19, 263–297 (1969).Google Scholar
  24. 24.
    Pritchard, R. H., Chandler, M. G., and Collins, J. Independence of F replication and chromosome replication in Escherichia coli. Mol. Gen. Genet. 138, 143–155 (1975).PubMedCrossRefGoogle Scholar
  25. 25.
    Rownd, R. H., and Nickel, S. Dissociation and reassociation of RFT and r-determinants of the R-factor 1Rl in Proteus mirabilis. Nature New Biol., 234, 40–43 (1971).PubMedCrossRefGoogle Scholar
  26. 26.
    Rownd, R. H., Perlman, D., and Goto, N. Structure and replication of R-factor DNA in Proteus mirabilis. Microbiology 1974 (D. Schlessinger ed.), p. 76–95, Washington, D.C. American Society for Microbiology (1975).Google Scholar
  27. 27.
    Sakakibara, Y., and Tomizawa, J. Termination point of replication of colicin El plasmid DNA in cell extracts. Proc. Nat. Acad. Sci. U.S.A., 71, 4935–4939 (1974).CrossRefGoogle Scholar
  28. 28.
    Skurray, R. A., Nagaishi, H., and Clark, A. J. Molecular cloning of DNA from F sex factor of Escherichia coli K-12. Proc. Nat. Acad. Sci. U.S. 73, 64–68 (1976).CrossRefGoogle Scholar
  29. 29.
    Staudenbauer, W. L. Replication of colicinogenic factor El DNA: evidence for a discontinuous replication mechanism. Nucleic Acids Res., 1, 11531164 (1974)Google Scholar
  30. 30.
    Timmis, K., Cabello, F., and Cohen, S. N. Covalently closed circular DNA molecules with low superhelical density as intermediates in plasmid DNA replication. Nature, 261, 512–516 (1976).PubMedCrossRefGoogle Scholar
  31. 31.
    Wang, J. C. Interaction between DNA and an Escherichia coli protein W. J. Mol. Biol. 55, 523–533 (1971).Google Scholar
  32. 32.
    Yu, K., and Cheevers, W. P. DNA synthesis in polyoma virus infection. IV. Mechanisms of formation of closed-circular viral DNA deficient in superhelical turns. J. Virol. 17, 402–414 (1976).PubMedGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1977

Authors and Affiliations

  • Jorge H. Crosa
  • Linda K. Luttropp
  • Stanley Falkow

There are no affiliations available

Personalised recommendations