Effect of Plasmids on Cell Division and on the Cell Envelope of Escherichia coli

  • Kurt Nordström
  • Birgitta Engberg
  • Petter Gustafsson
  • Søren Molin
  • Bernt Eric Uhlin
Part of the Topics in Infectious Diseases book series (TIDIS, volume 2)


Plasmids are replicating DNA molecules that are present in a stable number of copies per cell in an exponentially growing population of bacteria (1,2). They directly affect the phenotype of their host bacteria by carrying genes mediating antibiotic resistance, bacteriocin production, catabolic functions, etc. (1,3). However, apart from these direct effects, the presence of plasmids in a cell may also indirectly affect the phenotype of the host bacterium.


Gene Dosage Bacteriocin Production Plasmid Copy Plasmid Copy Number Conjugal Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Falkow, S.: Infectious Multiple Drug Resistance. Pion Ltd. 1975.Google Scholar
  2. 2.
    Clowes, R. C.: Molecular Structure of Bacterial Plasmids. Bacteriol. Rev. 36, 361–405 (1972).PubMedGoogle Scholar
  3. 3.
    Reanny, D.: Extrachromosomal Elements as Possible Agents of Adaption and Development. Bacteriol. Rev. 40, 552–590 (1976).Google Scholar
  4. 4.
    Nordström, K.: Increased Resistance to Several Antibiotics by One Mutation in an R-factor. J. Gen. Microbiol. 66, 205–214 (1971).PubMedGoogle Scholar
  5. 5.
    Nordström K., Ingram, L. C., Lundbäck, A.: Mutations in R-Factors of Escherichia coli Causing an Increased Number of R-Factor Copies per Chromosome. J. Bacteriol. 110, 562–569 (1972).PubMedGoogle Scholar
  6. 6.
    Kool, A. J., Nijkamp, H. J. J.: Isolation and Characterization of a Copy Mutant of the Bacteriocinogenic.Plasmid Clo DF13. J. Bacteriol. 120, 569–578 (1974).PubMedGoogle Scholar
  7. 7.
    Matsubura, K., Takeda, Y.: Role of the tof Gene in the Production of the X dv Plasmid. Mol. Gen. Genet. 142, 225–230 (1975).CrossRefGoogle Scholar
  8. 8.
    Morris, S. F., Hashimoto, H., Mickel, S., Rownd, R.: Round of Replication Mutant of a Drug Resistance Factor. J. Bacteriol. 118, 855–866 (1974).PubMedGoogle Scholar
  9. 9.
    Timmis, K., Winkler, U.: Gene Dosage Studies With Pleiotropic Mutants of Serratia marcescens Superactive in the Synthesis of Marcescin A and Certain Other Exocellular Proteins. Mol. Gen. Genet. 124, 207–217 (1973).PubMedCrossRefGoogle Scholar
  10. 10.
    Cress, D. E., Kline B. C.: Isolation and Characterization of Escherichia coli Chromosomal Mutants Affecting Plasmid Copy Number. J. Bacteriol. 125, 635–642 (1946).Google Scholar
  11. 11.
    Macrina, F.L., Weatherly, G. G., Curtiss III, R.: R6K Plasmid Replication: Influence of Chromosomal Genotype in MinicellProducing Strains of Escherichia coli. J. Bacteriol. 120, 1387–1400 (1974).PubMedGoogle Scholar
  12. 12.
    Meynell, E., Datta, N.: The Relation of Resistance Transfer Factors to the F-Factor (Sex Factor) of Escherichia coli K-12. Genet. Res. 7, 134–140 (1966).PubMedCrossRefGoogle Scholar
  13. 13.
    Meynell, E., Datta, N.: Mutant Drug-Resistant Factors of High Transmissibility. Nature (London) 214, 885–887 (1967).CrossRefGoogle Scholar
  14. 14.
    Nordström, K., Engberg, B., Gustafsson, P., Molin, S., Uhlin, B. E.: Copy Mutants of the Plasmid R1 as a Tool in Studies of Control of Plasmid Replication. This volume.Google Scholar
  15. 15.
    Cohen, S. N., Miller, C. A.: Non-Chromosomal Antibiotic Resistance in Bacteria. H. Molecular Nature of R-Factors Isolated From Proteus mirabilis and Escherichia coli. J. Mol. Biol. 50, 671–687 (1970).Google Scholar
  16. 16.
    Meynell, E., Meynell, G. G., Datta, N.: Phylogenetic Relationship of Drug-Resistance Factors and Other Transmissible Bacterial Plasmids. Bacteriol. Rev. 32, 55–83 (1968).PubMedGoogle Scholar
  17. 17.
    Hedges, R. W., Datta, N.: R124, a fi+ R-Factor of a New Compatibility Class. J. Gen. Microbiol. 71, 403–405 (1972).PubMedGoogle Scholar
  18. 18.
    Sköld, O.: R-Factor-Mediated Resistance to Sulphonamides by a Drug-Resistant Dihydropteroate Synthase. Antimicrob. Ag. Chemother. 9, 49–54 (1976).Google Scholar
  19. 19.
    Novick, R. P., Clowes, R. C., Cohen, S. N., Curtiss III, R., Datta, N., Falkow, S.: Uniform Nomenclature for Bacterial Plasmids: A Proposal. Bacteriol. Rev. 40, 168–198 (1976).PubMedGoogle Scholar
  20. 19.
    Novick, R. P., Clowes, R. C., Cohen, S. N., Curtiss III, R., Datta, N., Falkow, S.: Uniform Nomenclature for Bacterial Plasmids: A Proposal. Bacteriol. Rev. 40, 168–198 (1976).PubMedGoogle Scholar
  21. 21.
    Uhlin, B. E., Nordström, K.: Plasmid Incompatibility and Control of Replication: Copy Mutants of the R-Factor R1 in Escherichia coli K-12. J. Bacteriol. 124, 641–649 (1975).PubMedGoogle Scholar
  22. 22.
    Lundback, A. K., Nordström, K.: Effect of R-Factor-Mediated Drug-Metabolizing Enzymes on Survival of Escherichia coli K-12 in Presence of Ampicillin, Chloramphenicol, or Streptomycin. Antimicrob. Ag. Chemother. 5, 492–499 (1974).Google Scholar
  23. 23.
    Nordström, K., Eriksson-Grennberg, K. G., Boman, H. G.: Resistance of Escherichia coli to Penicillins. III. AmpB, a Locus Affecting Episomally and Chromosomally Mediated Resistance to Ampicillin and Chloramphenicol. Genet. Res. 12, 157–168 (1968).PubMedCrossRefGoogle Scholar
  24. 24.
    Rothfield, L., Pearlman-Kothencz, M.: Synthesis and Assembly of Bacterial Membrane Components. A Lipopolysaccharide-Phospholipid-Protein Complex Excreted by Living Bacteria. J. Mol. Biol. 44, 477–492 (1969).PubMedCrossRefGoogle Scholar
  25. 25.
    Engberg, B., Nordström, K.: Replication of the R-Factor R1 in Escherichia coli K-12 at Different Growth Rates. J. Bacteriol. 123, 179–186 (1975).PubMedGoogle Scholar
  26. 26.
    Engberg, B., Hjalmarsson, K., Nordström, K.: Inhibition of Cell Division in Escherichia coli K-12 by the R-Factor R1 and Copy Mutants of R1. J. Bacteriol. 124, 633–640 (1975).PubMedGoogle Scholar
  27. 27.
    Inouye, M.: Pleiotropic Effect of the recA Gene of Escherichia coli: Uncoupling of Cell Division From Deoxyribonucleic Acid Replication. J. Bacteriol. 106, 539–542 (1971).PubMedGoogle Scholar
  28. 28.
    Goebel, W.: The Influence of dnaA and dnaC Mutations on the Initiation of Plasmid DNA Replication. Biochem. Biophys. Res. Commun. 51, 1000–1007 (1973).PubMedCrossRefGoogle Scholar
  29. 29.
    Goebel, W.: Replication of Plasmid DNA in Escherichia coli. Proc. Soc. Gen. Microbiol. 1, 1–2 (1973).Google Scholar
  30. 30.
    Nordström, U. M., Engberg, B., Nordström, K.: Competition for DNA Polymerase III Between the Chromosome and the R-Factor R1. Mol. Gen. Genet. 135, 185–190 (1974).PubMedCrossRefGoogle Scholar
  31. 31.
    Slater, M., Schaechter, M.: Control of Cell Division in Bacteria. Bacteriol. Rev. 38, 199–221 (1974).PubMedGoogle Scholar
  32. 32.
    Zaritsky, A., Pritchard, R. H.: Changes in Cell Size and Shape Associated With Changes in the Replication Time of the Chromosome of Escherichia coli. J. Bacteriol. 114, 824–837 (1973).PubMedGoogle Scholar
  33. 33.
    Lane, H. E. D., Denhardt, D. T.: The rep Mutation. III. Altered Structure of the Replication Escherichia coli Chromosome. J. Bacteriol. 120, 805–814 (1974).PubMedGoogle Scholar
  34. 34.
    Boman, H. G., Nordström, K., Normark, S.: Penicillin Resistance in Escherichia coli K-12: Synergism Between Penicillinases and a Barrier in the Outer Part of the Envelope. Ann. N. Y. Acad. Sci. 235, 569–586 (1974).PubMedCrossRefGoogle Scholar
  35. 35.
    Hartman, G., Honikel, K. O., KnUsel, F., Nüesch, J.: The Specific Inhibition of the DNA-Directed RNA Synthesis by Rifampicin. Biochem. Biophys. Acta 145, 843–844 (1967).Google Scholar
  36. 36.
    Reid, P., Speyer, J.: Rifampicin Inhibition of Ribonucleic Acid and Protein Synthesis in Normal and Ethylenediaminetetra Acetic Acid-Treated Escherichia coli. J. Bacteriol. 104, 376–389 (1970).PubMedGoogle Scholar
  37. 37.
    Riva, S., Fietta, A. M., Silvestri, L. G.: R-Factors Determined Changes in Permeability of E. coli Towards Rifampicin and Other Antibiotics. (Bacterial Plasmids and Antibiotic Resistance, pp. 343–348 ). Berlin-Heidelberg-New York: Springer 1972.Google Scholar
  38. 38.
    Payne, J. W. Gilvarg, C.: Size Restriction on Peptide Utilization in Escherichia coli. J. Biol. Chem. 243, 6291–6299 (1968).PubMedGoogle Scholar
  39. 39.
    Gustafsson, P., Nordström, K., Normark, S.: Outer Penetration Barrier of Escherichia coli K-12: Kinetics of the Uptake of Gentian Violet by Wild Type and Envelope Mutants. J. Bacteriol. 116, 893–900 (1973).PubMedGoogle Scholar
  40. 40.
    Eriksson-Grennberg, K. G., Nordström, K., Englund, P.: Resistance of Escherichia coli to Penicillins. IX. Genetics and Physiology of Class II Ampicillin-Resistant Mutants That Are Galactose Negative or Sensitive to Bacteriophage C21, or Both. J. Bacteriol. 108, 1210–1223 (1971).PubMedGoogle Scholar
  41. 41.
    Mickel, S., Bauer, W.: Isolation, by Tetracycline Selection, of Small Plasmids Derived From P-Factor R12 in Escherichia coli K-12. J. Bacteriol. 127, 644–655 (1976).PubMedGoogle Scholar
  42. 42.
    Lindquvist,, R. C.,Nordström, K.: Resistance of Escherichia coli to Penicillins. VII. Purification and Characterization of a Penicillinase Mediated by the R-Factor R1. J. Bacteriol. 101, 232–239 (1970).Google Scholar
  43. 43.
    Lundbäck, A. K., Nordström, K.: Mutations in Escherichia coli K-12 Decreasing the Rate of Streptomycin Uptake: Synergism With R-Factor-Mediated Capacity to Inactivate Streptomycin. Antimicrob. Ag. Chemother. 5, 500–507 (1974).Google Scholar
  44. 44.
    Dempsey, W. B., Willetts, N. S.: Plasmid Co-Integrates of Prophage Lambda and R-Factor R100. J. Bacteriol. 126, 166–176 (1976).PubMedGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1977

Authors and Affiliations

  • Kurt Nordström
  • Birgitta Engberg
    • 1
  • Petter Gustafsson
  • Søren Molin
  • Bernt Eric Uhlin
  1. 1.Department of MicrobiologyUniversity of UmeåSweden

Personalised recommendations