What Is the Mechanism of Plasmid-Determined Resistance to Aminoglycoside Antibiotics?

  • Julian Davies
  • Sarah A. Kagan
Part of the Topics in Infectious Diseases book series (TIDIS, volume 2)


In considerations of the mechanisms of antibiotic resistance in bacteria that contain plasmids, four mechanisms are generally possible. In one, the plasmid encodes an enzyme (or enzymes) that alters the target site for the antibiotic such that the binding of the antibiotic is greatly reduced. There are very few examples of this mechanism but such is known to be the case with macrolide-lincosaminide resistance in Staphylococcus aureus; plasmids mediate specific methylation of the 23S ribosomal RNA and destroy the binding site for the drug (1). In a second mechanism, plasmids encode a replacement function that is insensitive to the drug, allowing the inhibited form of the enzyme to be bypassed. For example, in sulfonamide resistance where the resistant cell contains two dihydropteroate synthetases, one chromosomally determined and inhibited by sulfa drugs, the other plasmid determined and refractory to this inhibition (2). A similar situation exists for trimethoprim resistance (3).


Pseudomonas Aeruginosa Sensitive Cell Aminoglycoside Antibiotic Sulfonamide Resistance Substantial Biological Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lai, C. J., Weisblum, B.: Altered methylation of ribosomal RNA in an erythromycin-resistant strain of Staphylococcus aureus. Proc. Natl. Acad. sci. U.S.A. 68, 856–860 (1971).PubMedCrossRefGoogle Scholar
  2. 2.
    Wise, E. M. Jr., Abou-Donia, M. M.: Sulfonamide resistance mechanism in Escherichia coli: R plasmids can determine sulfonamide-resistant dihydropteroate synthases. Proc. Natl. Acad. Sci. U.S.A. 72, 2621–2625 (1975).Google Scholar
  3. 3.
    Amyes, S. G. B., Smith, J. T.: R-factor trimethoprim resistance mechanism: An insusceptible target site. Biochem. Biophys. Res. Commun. 58, 412–418 1974);Google Scholar
  4. Skö1d, 0., Widh, A.: A new dihydrofolate reductase with low trimethoprim sensitivity induced by an R factor mediating high resistance to trimethoprim. J. Biol. Chem. 249, 4324–4325 (1974).Google Scholar
  5. 4.
    Richmond, M. H., Jack, G. W., Sykes, R. B.: The ß-lactamases of gramnegative bacteria including pseudomonads. Ann. N. Y. Acad. Sci., 182, 243–257 (1971).PubMedCrossRefGoogle Scholar
  6. 5.
    Franklin, T. J.: Resistance of Escherichia coli to tetracyclines: Changes in permeability to tetracyclines in Escherichia coli bearing transferable resistance factors. Biochem. J. 105, 371–378 (1967).PubMedGoogle Scholar
  7. 6.
    Benveniste, R., Davies, J.: Mechanisms of antibiotic resistance in bacteria. Ann. Rev. Biochem. 42, 471–506 (1973).PubMedCrossRefGoogle Scholar
  8. 7.
    Benveniste, R., Davies, J.: Structure-activity relationships among the aminoglycoside antibiotics: Role of hydroxyl and amino groups. Anti. Ag. Chemoth. 4, 402–409 (1973).Google Scholar
  9. 8.
    Benveniste, R., Davies, J.: Enzymatic acetylation of gminoglycoside antibiotics by Escherichia coli carrying an R factor. Biochemistry 10, 1787–1796 (1971).PubMedCrossRefGoogle Scholar
  10. 9.
    Courvalin, P., Davies, J.: Plasmid-mediated aminoglycoside phosphotransferase of broad substrate range that phosphorylates amikacin. Antimicrob. Ag. Chemoth. 11, 619–624 (1977).Google Scholar
  11. 10.
    Davies, J., Berg, D., Jorgensen, R., Fiandt, M., Courvalin, P., Sehloff, J.: Transposable neomycin phosphotransferases. This volume.Google Scholar
  12. 11.
    Bryan, L. E., van den Elzen, H. M., Shahrabadi, M. S.: The relationship of aminoglycoside permeability to streptomycin and gentamicin susceptibility of Pseudomonas aeruginosa in “Microbial Drug Resistance” (eds. Mitsuhashi, S., Hashimoto, H. ), University Park Press, Baltimore, Md, 1975, pp. 475–490.Google Scholar
  13. 12.
    Davies, J.: unpublished observations.Google Scholar
  14. 13.
    Williams, J. W., Northrop, D. B.: Purification and properties of gentamicin acetyltransferase I. Biochemistry 15, 125–131 (1975).CrossRefGoogle Scholar
  15. 14.
    Jacoby, G. A.: Properties of an R plasmid in Pseudomonas aeruginosa producing amikacin (BBK-8), butirosin, kanamycin, tobramycin and sisomicin resistance. Antimicrob. Ag. Chemother. 6, 807–810 (1974).Google Scholar
  16. 15.
    Biddlecome, S., Haas, M., Davies, J., Miller, G. H., Rane, D. F., Daniels, P. J. L.: Enzymatic modification of aminoglycoside antibiotics: A new 3-N-acetylating enzyme from a Pseudomonas aeruginosa isolate. Antimicrob. Ag. Chemother. 9, 951–955 (1976).Google Scholar
  17. 16.
    Kanner, B. I., Gutnick, D. L.: Use of neomycin in the isolation of mutants blocked in energy conservation in Escherichia coli. Bacteriol. 111, 287–289 (1972).; Lieberman, M. A., Hong, J.-S.: A mutant of Escherichia coli defective in the coupling of metabolic energy to active transport. Proc. Natl. Acad. Sci. U.S.A. 71, 4395–4399 (1974).Google Scholar
  18. 17.
    Bryan, L. E., van den Elzen, H. M.: Gentamicin accumulation by sensitive strains of Escherichia coli and Pseudomonas aeruginosa. J. Antibiot. 28, 696–703 (1975).PubMedGoogle Scholar
  19. 18.
    Zimelis, V. M., Jackson, G. G.: Activity of aminoglycoside antibiotics against Pseudomonas aeruginosa: Specificity and site of calcium and magnesium antagonism. J. Infect. Dis. 127, 663–669 (1973).PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1977

Authors and Affiliations

  • Julian Davies
  • Sarah A. Kagan

There are no affiliations available

Personalised recommendations