Skip to main content

What Is the Mechanism of Plasmid-Determined Resistance to Aminoglycoside Antibiotics?

  • Conference paper
R-Factors: Their Properties and Possible Control

Part of the book series: Topics in Infectious Diseases ((TIDIS,volume 2))

Abstract

In considerations of the mechanisms of antibiotic resistance in bacteria that contain plasmids, four mechanisms are generally possible. In one, the plasmid encodes an enzyme (or enzymes) that alters the target site for the antibiotic such that the binding of the antibiotic is greatly reduced. There are very few examples of this mechanism but such is known to be the case with macrolide-lincosaminide resistance in Staphylococcus aureus; plasmids mediate specific methylation of the 23S ribosomal RNA and destroy the binding site for the drug (1). In a second mechanism, plasmids encode a replacement function that is insensitive to the drug, allowing the inhibited form of the enzyme to be bypassed. For example, in sulfonamide resistance where the resistant cell contains two dihydropteroate synthetases, one chromosomally determined and inhibited by sulfa drugs, the other plasmid determined and refractory to this inhibition (2). A similar situation exists for trimethoprim resistance (3).

This work was supported by grants from the National Institutes of Health and Cell and Molecular Biology Training Grant, University of Wisconsin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Lai, C. J., Weisblum, B.: Altered methylation of ribosomal RNA in an erythromycin-resistant strain of Staphylococcus aureus. Proc. Natl. Acad. sci. U.S.A. 68, 856–860 (1971).

    Article  PubMed  CAS  Google Scholar 

  2. Wise, E. M. Jr., Abou-Donia, M. M.: Sulfonamide resistance mechanism in Escherichia coli: R plasmids can determine sulfonamide-resistant dihydropteroate synthases. Proc. Natl. Acad. Sci. U.S.A. 72, 2621–2625 (1975).

    Google Scholar 

  3. Amyes, S. G. B., Smith, J. T.: R-factor trimethoprim resistance mechanism: An insusceptible target site. Biochem. Biophys. Res. Commun. 58, 412–418 1974);

    Google Scholar 

  4. Skö1d, 0., Widh, A.: A new dihydrofolate reductase with low trimethoprim sensitivity induced by an R factor mediating high resistance to trimethoprim. J. Biol. Chem. 249, 4324–4325 (1974).

    Google Scholar 

  5. Richmond, M. H., Jack, G. W., Sykes, R. B.: The ß-lactamases of gramnegative bacteria including pseudomonads. Ann. N. Y. Acad. Sci., 182, 243–257 (1971).

    Article  PubMed  CAS  Google Scholar 

  6. Franklin, T. J.: Resistance of Escherichia coli to tetracyclines: Changes in permeability to tetracyclines in Escherichia coli bearing transferable resistance factors. Biochem. J. 105, 371–378 (1967).

    PubMed  CAS  Google Scholar 

  7. Benveniste, R., Davies, J.: Mechanisms of antibiotic resistance in bacteria. Ann. Rev. Biochem. 42, 471–506 (1973).

    Article  PubMed  CAS  Google Scholar 

  8. Benveniste, R., Davies, J.: Structure-activity relationships among the aminoglycoside antibiotics: Role of hydroxyl and amino groups. Anti. Ag. Chemoth. 4, 402–409 (1973).

    CAS  Google Scholar 

  9. Benveniste, R., Davies, J.: Enzymatic acetylation of gminoglycoside antibiotics by Escherichia coli carrying an R factor. Biochemistry 10, 1787–1796 (1971).

    Article  PubMed  CAS  Google Scholar 

  10. Courvalin, P., Davies, J.: Plasmid-mediated aminoglycoside phosphotransferase of broad substrate range that phosphorylates amikacin. Antimicrob. Ag. Chemoth. 11, 619–624 (1977).

    CAS  Google Scholar 

  11. Davies, J., Berg, D., Jorgensen, R., Fiandt, M., Courvalin, P., Sehloff, J.: Transposable neomycin phosphotransferases. This volume.

    Google Scholar 

  12. Bryan, L. E., van den Elzen, H. M., Shahrabadi, M. S.: The relationship of aminoglycoside permeability to streptomycin and gentamicin susceptibility of Pseudomonas aeruginosa in “Microbial Drug Resistance” (eds. Mitsuhashi, S., Hashimoto, H. ), University Park Press, Baltimore, Md, 1975, pp. 475–490.

    Google Scholar 

  13. Davies, J.: unpublished observations.

    Google Scholar 

  14. Williams, J. W., Northrop, D. B.: Purification and properties of gentamicin acetyltransferase I. Biochemistry 15, 125–131 (1975).

    Article  Google Scholar 

  15. Jacoby, G. A.: Properties of an R plasmid in Pseudomonas aeruginosa producing amikacin (BBK-8), butirosin, kanamycin, tobramycin and sisomicin resistance. Antimicrob. Ag. Chemother. 6, 807–810 (1974).

    Google Scholar 

  16. Biddlecome, S., Haas, M., Davies, J., Miller, G. H., Rane, D. F., Daniels, P. J. L.: Enzymatic modification of aminoglycoside antibiotics: A new 3-N-acetylating enzyme from a Pseudomonas aeruginosa isolate. Antimicrob. Ag. Chemother. 9, 951–955 (1976).

    CAS  Google Scholar 

  17. Kanner, B. I., Gutnick, D. L.: Use of neomycin in the isolation of mutants blocked in energy conservation in Escherichia coli. Bacteriol. 111, 287–289 (1972).; Lieberman, M. A., Hong, J.-S.: A mutant of Escherichia coli defective in the coupling of metabolic energy to active transport. Proc. Natl. Acad. Sci. U.S.A. 71, 4395–4399 (1974).

    Google Scholar 

  18. Bryan, L. E., van den Elzen, H. M.: Gentamicin accumulation by sensitive strains of Escherichia coli and Pseudomonas aeruginosa. J. Antibiot. 28, 696–703 (1975).

    PubMed  CAS  Google Scholar 

  19. Zimelis, V. M., Jackson, G. G.: Activity of aminoglycoside antibiotics against Pseudomonas aeruginosa: Specificity and site of calcium and magnesium antagonism. J. Infect. Dis. 127, 663–669 (1973).

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Springer-Verlag/Wien

About this paper

Cite this paper

Davies, J., Kagan, S.A. (1977). What Is the Mechanism of Plasmid-Determined Resistance to Aminoglycoside Antibiotics?. In: Drews, J., Högenauer, G. (eds) R-Factors: Their Properties and Possible Control. Topics in Infectious Diseases, vol 2. Springer, Vienna. https://doi.org/10.1007/978-3-7091-8501-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-8501-8_13

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-8503-2

  • Online ISBN: 978-3-7091-8501-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics