Advertisement

Evolutional Process of the Formation of Multiple Resistance Plasmids

  • S. Mitsuhashi
  • H. Kawabe
  • T. Nagate
  • K. Inoue
Conference paper
Part of the Topics in Infectious Diseases book series (TIDIS, volume 2)

Abstract

Sulfanilamide(SA) and its derivatives were used in Japan since 1940 against infections with both gram-positive and gram-negative bacteria and pioneered a chemotherapy as an effective antibacterial agent. In parallel with the wide use of the drugs, the isolation frequencies of SA-resistant strains of bacteria increased and reached a maximum of 90–95% of Shigella and Staphylococcus aureus isolates being resistant to SA(1–4).

Keywords

Coli Strain Amino Glycoside Antibiotic Isolation Frequency Demonstration Frequency Conjugative Plasmid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. 1.
    Mitsuhashi, S.: Epidemiology of bacterial drug resistance. In:Transferable drug resistance factor R(S.Mitsuhashi), p.1–16. University of Tokyo Press; University Park Press, Tokyo, Baltimore and London. 1971.Google Scholar
  2. 2.
    Mitsuhashi, S.: Epidemiology and genetical study of drug resistance in Staphylococcus aureus. Japan.J.Microbiol. 11, 49–68 (1967).Google Scholar
  3. 3.
    Mitsuhashi, S., Inoue, M., Kawabe, H., Oshima, H., Okubo, T.: Genetic and biochemical studies of drug resistance in staphylococci. In: Staphylococci and Staphylococcal Infections(J.Jeljaszewicz), p. 144–165 Karger, Basel. 1973.Google Scholar
  4. 4.
    Mitsuhashi, S., Inoue, M., Oshima, H., Okubo, T., Saito, T.: Epidemiologic and genetic studies of drug resistance in staphylococci. In:Staphylococci and Staphylococcal Infections(J.Jeljaszewicz), p.255–274. Gustav Fischer Verlag, Stuttgart and New York. 1976.Google Scholar
  5. 5.
    Mitsuhashi, S.: Epidemiology of R factors. In:Transferable drug resistance factor R(S.Mitsuhashi), p.25–38. University of Tokyo Press; University Park Press, Tokyo, Baltimore and London. 1971.Google Scholar
  6. 6.
    Anderson, E. S., Lewis, M. J.: Characterization of a transfer factor associated with drug resistance in Salmonella typhimurium. Nature 208, 843–849 (1965)PubMedCrossRefGoogle Scholar
  7. 7.
    Mitsuhashi, S., Kameda, M., Harada, K., Suzuki, M.: Formation of recombinants between nontransferable drug-resistance determinants and transfer factor. J. Bacteriol. 97, 1520–1521 (1969).PubMedGoogle Scholar
  8. 8.
    Mitsuhashi, S., Morimura, M., Kono, M., Oshima, H.: Elimination of drug resistance in Staphylococcus aureus by treatment with acriflavine. J. Bacteriol. 86, 162–163 (1963).PubMedGoogle Scholar
  9. 9.
    Novick, R. P.: Analysis by transduction of mutations affecting penicilli-nase formation in Staphylococcus aureus. J.gen.Microbiol. 33, 121–136 (1963).PubMedGoogle Scholar
  10. 10.
    Pato, M. L., Brown, G. M.: Mechanisms of resistance of Escherichia coli to sulfonamides. Arch. Biochem. Biophys. 103, 443–448 (1963).PubMedCrossRefGoogle Scholar
  11. 11.
    Wise, E. M. Jr., Abou-Donia, M. M.: Sulfonamide resistance mechanism in Escherichia coli: R plasmids can determine sulfonamide-resistant dihydropteroate synthases. Proc. Natl. Acad. Sci. U.S.A. 72, 2621–2625 (1975).PubMedCrossRefGoogle Scholar
  12. 12.
    Skeld, O.: R-factor-mediated resistance to sulfonamides by a plasmidborne, drug-resistant dihydropteroate synthetase. Antimicrob. Agent Chemother. 9, 49–54 (1976).Google Scholar
  13. 13.
    Shiota, T., Disraely, M. N., McCann, M. P.: The enzymatic synthesis of folate-like compounds from hydroxy-methyl-dihydro-pteridine pyrophosphate. J. Biol. Chem., 239, 2259–2266 (1964).PubMedGoogle Scholar
  14. 14.
    Akiba, T. Yokota, T.: Studies on the mechanism of transfer of drug resistance in bacteria. 18. Incorporation of 35S-sulfathiazole into cells of the multiple resistant strain and the artificial sulfonamid-resistant strain of E. coli. Medicine and Biology. 63, 155–159 (1962).Google Scholar
  15. 15.
    Okamoto, S., Suzuki, Y.: Chloramphenicol-, dihydrostreptomycin-and kanamycin-inactivating enzymes from multiple drug-resistant E. coli carrying episome “R”. Nature 208, 1301–1303 (1965).PubMedGoogle Scholar
  16. 16.
    Ozanne, B., Benveniste, R., Tipper, D., Davies, J.: Aminoglycoside antibiotics: inactivation by phosphorylation in Escherichia coli carrying R factor. J. Bacteriol. 100, 1144–1146 (1969).PubMedGoogle Scholar
  17. 17.
    Kida, M., Asako, T., Yoneda, M., Mitsuhashi, S.: Phosphorylation of dihydrostreptomycin by Pseudomonas aeruginosa. In: Microbial Drug Resistance(S.Mitsuhashi and H.Hashimoto), p. 441–448. University of Tokyo Press; University Park Press, Tokyo, Baltimore and London. 1975.Google Scholar
  18. 18.
    Walker, J. B., Skorvaga, M.: Phosphorylation of streptomycin and dihydrostreptomycin by Streptomyces. J. Biol. Chem. 248, 2435–2440 (1973).PubMedGoogle Scholar
  19. 19.
    Umezawa, H., Takasawa, S., Okanishi, M., Utahara, R.: Adenylylstreptomycin, a product of streptomycin inactivated by E. coli strain carrying R factor. J. Antibiotics 21, 81–82 (1968).Google Scholar
  20. 20.
    Kawabe, H., Kobayashi, F., Yamaguchi, M., Utahara, R., Mitsuhashi, S.: 3“-Phosphoryldihydrostreptomycin produced by the inactivating enzyme of Pseudomonas aeruginosa. J. Antibiot. 24, 651–652 (1971).PubMedGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1977

Authors and Affiliations

  • S. Mitsuhashi
  • H. Kawabe
  • T. Nagate
  • K. Inoue

There are no affiliations available

Personalised recommendations