The Effects of Drugs on the Field Potential in the Caudate Nucleus Following Nigra Stimulation

  • A. Wagner
  • M. Dupelj
  • K. C. Lee
Part of the Acta Neurochirurgica Supplementum book series (NEUROCHIRURGICA, volume 24)


The reciprocal connections of the caudate (Cd) and nigra (Ni) nuclei have been extensively studied using anatomical 2, 17, 26, 27, 28, 35, 36, 37, histochemical 1, 13, 30, 8 and electrophysiological 3, 6, 9, 12, 14, 15, 22, 23, 24. 38 methods but in some respects the situation is even less satisfactory than a few years ago. The present communication is aimed at examining the characteristics of field potentials in the Cd evoked from stimulation of the Ni before and after systemic application of drugs. The cats were anaesthetized with sodium pentobarbital (30–40 mg/kg), immobilized by flaxedil and artifically ventilated. The overlying cortical structures were removed by suction to expose the dorsal surface of the Cd. The nigro-caudate pathway was electrically stimulated using bipolar electrodes placed in the Ni proper. Similar electrodes in the cerebral peduncle (CP) allowed antidromic activation of the Cd. Field potentials were recorded in the medial two thirds of the ipsilateral Cd with glass microelectrodes filled with either 2 M sodium chloride or 3 M potassium chloride (DC resistance: 3–5 MΩ). A Nicollete 1074 was used for averaging the signals. The recording and stimulating electrode tracts were identified histologically.


Substantia Nigra Field Potential Caudate Nucleus Corpus Striatum Positive Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anden, N. E., Carlsson, A., Dahlström, A., Fuxe, K., Hillarp, N. A., Larsson, K. (1964), Demonstration and mapping out of nigrostriatal dopamine neurons. Life Sci. (Oxford) 3, 523–530.Google Scholar
  2. 2.
    Bak, I. J., Choi, W. B., Hassler, R., Usunoff, K. G., Wagner, A. (1975), Fine structural synaptic organization of the corpus striatum and Substantia Nigra in rat and cat. Advances in Neurology, Vol. 9, pp. 25–41. New York: Raven Press.Google Scholar
  3. 3.
    Feltz, P., Albe-Fessard, D. (1972), A study of an ascending nigro-caudate pathway. Electroenceph. din. Neurophysiol. 33, 179–193.Google Scholar
  4. 4.
    Feltz, P. (1971), Sensitivity to haloperidol of caudate neurones excited by nigral stimulation. Europ. J. Pharmakol. 14, 360–364.CrossRefGoogle Scholar
  5. 5.
    Feltz, P., Champlain, J. de (1972), Persistence of caudate unitary responses to nigral stimulation after destruction and functional impairment of the striatal dopaminergic terminals. Brain Res. 43, 595–600.PubMedCrossRefGoogle Scholar
  6. 6.
    Feltz, P., McKenzie, J. S. (1969), Properties of caudate unitary responses to repetitive stimulation. Brain Res. 13, 612 — 616.PubMedCrossRefGoogle Scholar
  7. 7.
    Feltz, P. (1970 b), Relation nigro-striatale: essai de différentiation des excitation et inhibition par micro-iontopharèse de dopamine. J. Physiol. (Paris) 62, 151.Google Scholar
  8. 8.
    Fibiger, H. C., Mc. Geer, E. G., Atmadja, S. (1973), Axoplasmic transport of dopamine in nigro-striatal neurons. J. Neurochem. 21, 373–385.PubMedCrossRefGoogle Scholar
  9. 9.
    Frigyesi, T. L., Purpura, D. P. (1967), Electrophysiological analysis of reciprocal caudato-nigral relations. Brain Res. 6, 440–456.PubMedCrossRefGoogle Scholar
  10. 10.
    Hajdu, F., Hassler, R., Bak, I. J. (1973), Electron microscopic study of the Substantia Nigra and the strio-nigral projection in the rat. Z. Zellforsch. 146, 207–221.PubMedCrossRefGoogle Scholar
  11. 11.
    Hassler, R., Wagner, A. (1975), Locomotor activity and speed of movements in relation to monoamine-acting drugs. Int. J. Neurol. 10, 80–98.PubMedGoogle Scholar
  12. 12.
    Herz, A., Zieglgänsberger, W. (1968), The influence of microelectrophoretically applied biogenic amines, cholinomimetics and procaine on synaptic excitation in the corpus striatum. Int. J. Neuropharmakol. 7, 221–230.CrossRefGoogle Scholar
  13. 13.
    Hökfelt, T., Ungerstedt, U. (1969), Electron and fluorescence microscopical studies on the nucleus caudatus and putamen of the rat after unilateral lesions of ascending nigro-neostriatal dopamine neurons. Acta physiol. scand. 76, 415–426.PubMedCrossRefGoogle Scholar
  14. 14.
    Hull, C. D., Bernardi, G., Buchwald, N. A. (1970), Intracellular responses of caudate neurons to brain stem stimulation. Brain Res. 22, 163–179.PubMedCrossRefGoogle Scholar
  15. 15.
    Hull, C. D., Levine, M. S., Buchwald, N. A., Heller, A., Browning, R. A. (1974), The spontaneous firing pattern of forebrain neurons. I. The effects of dopamine and non-dopamine depleting lesions on caudate unit firing patterns. Brain Res. 73, 241–262.PubMedCrossRefGoogle Scholar
  16. 16.
    Kataoka, K., Bak, I. J., Hassler, R., Kim, J. S., Wagner, A. (1974), L-glutamate decarboxylase and choline acetyltransferase activity in the Substantia Nigra and the striatum after surgical interruption of the strio-nigral fibres of the Baboon. Brain Res. 19, 217–227.Google Scholar
  17. 17.
    Kemp, J. M. (1970), The termination of strio-pallidal and strio-nigral fibres. Brain Res. 17, 125–128.PubMedCrossRefGoogle Scholar
  18. 18.
    Kemp, J. M., Powell, T. P. S. (1971), The structure of the caudate nucleus of the cat: Light and electron microscopy. Phil. Trans. R. Soc. Ser. B 2 62, 383–401.CrossRefGoogle Scholar
  19. 19.
    Kim, J. S., Bak, I. J., Hassler, R., Okada, Y. (1971), Role of Aminobutyric acid (GABA) in the extrapyramidal motor system. II. Some evidence for the existence of a type of GABA-rich strio-nigral neurons. Exp. Brain Res. 14, 95–104.PubMedCrossRefGoogle Scholar
  20. 20.
    Kim, J. S. (1973), Effects of 6-hydroxydopamine on acetylcholine and GABA metabolism in rat striatum. Brain Res. 55, 472–475.PubMedCrossRefGoogle Scholar
  21. 21.
    Kim, J. S., Hassler, R. (1975), Effects of acute haloperidol on the gamma-aminobutyric system in rat striatum and Substantia Nigra. Brain Res. 88, 150–153.PubMedCrossRefGoogle Scholar
  22. 22.
    Kitai, S. T., Wagner, A., Precht, W., Ohno, T. (1975), Nigro-caudate and caudato-nigral relationship: an electrophysiological study. Brain Res. 85, 44–48.PubMedCrossRefGoogle Scholar
  23. 23.
    Krnjevic, K. (1974), Some neuroactive compounds in the Substantia Nigra. Advances in Neurology, Vol. 5, pp. 145–153. New York: Raven Press.Google Scholar
  24. 24.
    Mc. Lennan, H., York, D. H. (1967), The action of dopamine on neurones of the caudate nucleus. J. Physiol. (London) 189, 393–402.Google Scholar
  25. 25.
    Mc. Lennan, H., York, D. H., Cholinergic mechanism in the caudate nucleus. J. Physiol. 187, 163–175.Google Scholar
  26. 26.
    Maler, L., Fibiger, H. C., Mc. Geer, E. G. (1973), Demonstration of the nigro-striatal projection by silver staining after nigral injections of 6-hydroxydopamine. Exp. Neurol. 40, 505–515.PubMedCrossRefGoogle Scholar
  27. 27.
    Moore, R. Y., Bhatnagan, R. K., Heller, A. (1971), Anatomical and chemical studies of a nigro-neostriatal projection in the cat. Brain Res. 30, 119–135.PubMedCrossRefGoogle Scholar
  28. 28.
    Niimi, K., Ikeda, T., Kwamura, S., Inoshita, H. (1970), Efferent projections of the head of the caudate nucleus in the cat. Brain Res. 21, 327–343.PubMedCrossRefGoogle Scholar
  29. 29.
    Okada, Y., Hassler, R. (1973), Uptake and release of γ-aminobutyric acid (GABA) in slices of Substantia Nigra of rat. Brain Res. 49, 214–217.PubMedCrossRefGoogle Scholar
  30. 30.
    Olivier, A., Parent, A., Simard, H., Poirter, L. J. (1970), Cholinesterasic striatopallidal and striatonigral efferents in the cat and monkey. Brain Res. 18, 273–282.PubMedCrossRefGoogle Scholar
  31. 31.
    Precht, W., Yoshida, M. (1971), Blockage of caudate-evoked inhibition of neurons in the Substantia Nigra by picrotoxin. Brain Res. 32, 229–233.PubMedCrossRefGoogle Scholar
  32. 32.
    Roberts, E. (1974), γ-aminobutyric acid and nervous system function—a perspective. Biochemical Pharmacology, Vol. 23, pp. 2637–2649. Pergamon Press.Google Scholar
  33. 33.
    Roberts, E. (1974), Disinhibition as an organizing principle in the nervous system. The role of gamma-aminobutyric acid. Advances in Neurology, Vol. 5, pp. 127–144. New York: Raven Press.Google Scholar
  34. 34.
    Svennby, G., Roberts, E. (1973), Bicuculline and N-methylbicuculline-competitive inhibitors of brain acetylcholinesterase. J. Neurochem. Vol. 21, 1025–1026.Google Scholar
  35. 35.
    Szabo, J. (1962), Topical distribution of the striatal efferents in the monkey. Exp. Neurol. 5, 21–36.CrossRefGoogle Scholar
  36. 36.
    Usunoff, K. G., Hassler, R., Wagner, A., Bak, I. J. (1974), The efferent connections of the head of the caudate nucleus in the cat: An experimental morphological study with special reference to a projection to the raphe nuclei. Brain Res. 74, 143–148.PubMedCrossRefGoogle Scholar
  37. 37.
    Voneida, T. (1960), An experimental study of the course and destination of fibers arising in the head of the caudate nucleus in the cat and monkey. J. comp. Neurol. 115, 75–87.PubMedCrossRefGoogle Scholar
  38. 38.
    Yoshida, M., Precht, W. (1971), Monosynaptic inhibition of neurons of the Substantia Nigra by caudato-nigral fibers. Brain Res. 32, 225–228.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • A. Wagner
    • 1
  • M. Dupelj
    • 1
  • K. C. Lee
    • 1
  1. 1.Department of NeurobiologyMax-Planck-Institut für HirnforschungFrankfurt/M.Federal Republic of Germany

Personalised recommendations