The notion of culturing plant cells in vitro goes back to the beginning of this century. However, successful experiments in the culturing of unorganized plant cells for prolonged periods were first reported in 1939 independently by GAUTHERET (40) and WHITE (112), who in essence established the technique still in use today.


Cell Suspension Culture Secondary Metabolism Callus Culture Plant Tissue Culture Callus Tissue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allison, A. J., D. N. Butcher, J. D. Connolly, and K. H. Overton: Paniculides A, B and C, Bisbolenoid Lactones from Tissue Cultures of Andrographis paniculata. Chem. Comm. 1968, 1493.Google Scholar
  2. 2.
    Von Ardenne, M., G. Osske, K. Schreiber, K. Steinfelder, and R. Teummler: Sterols and Triterpenoids IX. Sterols and Triterpenoids in Solarium demissum and Solarium polyadenium. Kulturpflanze 13, 115 (1965).CrossRefGoogle Scholar
  3. 3.
    Austin, D. J., and S. A. Brown: Furanocoumarin Biosynthesis in Ruta graveolens Cell Cultures. Phytochemistry 12, 1657 (1973).CrossRefGoogle Scholar
  4. 4.
    Barton, D. H. R., J. G. T. Corrie, P. J. Marshall, and D. A. Widdowson: Biosynthesis of Terpenes and Steroids VII Unified Scheme for the Biosynthesis of Ergosterol in Saccharomyces cerevisiae. Bioorganic Chemistry 2, 363 (1973).CrossRefGoogle Scholar
  5. 5.
    Barz, W., F. Mohr, and E. Teufel: Catabolism of 4’,6’-dihydroxyaurones in Plant Cell Suspension Cultures. Phytochemistry 13, 1785 (1974).CrossRefGoogle Scholar
  6. 6.
    Benveniste, P.: The Biosynthesis of Sterols in Tissues of Tobacco Grown in vitro. Identification of Cycloeucalenol and Obtusifoliol. Phytochemistry 7, 951 (1968).CrossRefGoogle Scholar
  7. 7.
    Benveniste, P., M. A. Hartmann, and F. Durst: Biosynthesis of Sterols in Jerusalem Artichoke Tuber Tissue. Phytochemistry 11, 3003 (1972).CrossRefGoogle Scholar
  8. 8.
    Benveniste, P., and R. Heintz: Biosynthesis of 24-methylene Cycloartanol from Squalene-2(3)epoxide by Microsomes from Tissue Cultures of Bramble (Rubus fruticosus). Compt. Rend. D 274, 947 (1972).Google Scholar
  9. 9.
    Benveniste, P., and R. Heintz: Plant Sterol Metabolism. Enzymatic Cleavage of the 9β,19β-Cyclopropane Ring of Cyclopropyl Sterols in Bramble Tissue Cultures. J. Biol. Chem. 249, 4267 (1974).Google Scholar
  10. 10.
    Benveniste, P., R. Heintz, W. H. Robinson, and R. M. Coates: Demonstration and Identification of a Biosynthetic Intermediate between Farnesyl Pyrophosphate and Squalene in a Higher Plant. Biochem. Biophys. Res. Comm. 49, 1547 (1972).CrossRefGoogle Scholar
  11. 11.
    Benveniste, P., M. J. E. Hewlins, and B. Fritig: Biosynthesis of Sterols in Cultured Tobacco Tissues. Kinetics of Formation of Sterols and their Precursors. Eur. J. Biochem. 9, 526 (1969).CrossRefGoogle Scholar
  12. 12.
    Benveniste, P., L. Hirth, and G. Ourisson: Constituents of Plant Tissues Cultivated in vitro I. Sterol Biosynthesis in Tobacco Tissues. Bull. Soc. Fr. Physiol. Veg. 11, 252 (1965).Google Scholar
  13. 13.
    Benveniste, P., L. Hirth, and G. Ourisson: Biosynthesis of Sterols in the Tissues of Tobacco Grown in vitro I. Isolation of Sterols and Triterpenes. Phytochemistry 5, 31 (1966).CrossRefGoogle Scholar
  14. 14.
    Benveniste, P., L. Hirth, and G. Ourisson: Biosynthesis of Sterols in Tobacco Tissue Culture II. Details of Biosynthesis of Phytosterols. Phytochemistry 5, 45 (1966).CrossRefGoogle Scholar
  15. 75.
    Benveniste, P., and R. A. Massywestropp: Demonstration of the 2,3-epoxide of Squalene in Tobacco Tissues in vitro. Tetrahedron Letters 1967, 3553.Google Scholar
  16. 16.
    Berlin, J., and W. Barz: Metabolism of Isoflavones and Chalcones in Cell and Callus Suspension Cultures of Phaseolus aureus. Planta 98, 300 (1971).CrossRefGoogle Scholar
  17. 17.
    Berlin, J., W. Barz, H. Harms, and K. Haider: Degradation of Phenolic Compounds in Plant Cell Cultures. FEBS Letters 16, 141 (1971).CrossRefGoogle Scholar
  18. 18.
    Berlin, J., H. Harms, K. Haider, P. Kiss, and W. Barz: O-Demethylation and Decarboxylation of Benzoic Acids in Plant Cell Suspension Cultures. Planta 105, 342 (1972).CrossRefGoogle Scholar
  19. 19.
    Berlin, J., P. Kiss, D. Mullerenoch, D. Gierse, W. Barz, and B. Janistyn: Degradation of Chalcones and Isoflavones in Plant Cell Suspension Cultures. Z. Na-turforsch. C29, 374 (1974).Google Scholar
  20. 20.
    Carew, D. P., and E. J. Staba: Plant Tissue Culture. Its Fundamentals, Application and Relationships to Medicinal Plant Studies. Lloydia 28, 1 (1965).Google Scholar
  21. 21.
    Chan, W., and E. J. Staba: Alkaloid Production by Datura Callus and Suspension Tissue Cultures. Lloydia 28, 55 (1965).Google Scholar
  22. 22.
    Constabel, F., O. L. Gamborg, W. G. W. Kurz, and W. Steck: Production of Secondary Metabolites in Plant Cell Cultures. Planta Med. 25, 158 (1974).CrossRefGoogle Scholar
  23. 23.
    Constabel, F., J. P. Shyluk, and O. L. Gamborg: The Effects of Hormones on Anthocyanin Accumulation in Cell Cultures of Haplopappus gracilis. Planta 96, 306 (1971).CrossRefGoogle Scholar
  24. 24.
    Cotterell, G. P., T. G. Halsall, and M. J. Wriglesworth: The Chemistry of Triterpenes and Related Compounds Part XLVII Clarification of the Nature of the Tetracyclic Triterpene Acids of Elemi Resin. J. Chem. Soc. (C) 1970, 739.Google Scholar
  25. 25.
    Durand, R., and M. H. Zenk: Enzymes of the Homogentisate Ring-Cleavage Pathway in Cell Suspension Cultures of Higher Plants. FEBS Letters 39, 218 (1974).CrossRefGoogle Scholar
  26. 26.
    Durand, R., and M. H. Zenk: The Homogentisate Ring-Cleavage Pathway in the Biosynthesis of Acetate-Derived Naphthoquinones of the Droseraceae. Phytochemistry 13, 1483 (1974).CrossRefGoogle Scholar
  27. 27.
    Ellis, B. E.: A Survey of Catechol Ring-Cleavage by Sterile Plant Tissue Cultures. FEBS Letters 18, 228 (1971).CrossRefGoogle Scholar
  28. 28.
    Ellis, B. E.: Catabolic Ring-Cleavage of Tyrosine in Plant Cell Cultures. Planta 111, 113 (1973).CrossRefGoogle Scholar
  29. 29.
    Ellis, B. E.: Degradation of Aromatic Compounds in Plants. Lloydia 37, 168 (1974).Google Scholar
  30. 30.
    Ellis, B. E., and S. A. Brown: Isolation of Dimethylallyl Pyrophosphate: Umbelliferone Dimethylallyl Transferase from Ruta graveolens. Can. J. Biochem. 52, 734 (1974).Google Scholar
  31. 31.
    Ellis, B. E., and G. H. N. Towers: Degradation of Aromatic Compounds by Sterile Plant Tissues. Phytochemistry 9, 1457 (1970).CrossRefGoogle Scholar
  32. 32.
    Elze, H., and E. Teuscher: Biochem. Physiol. Alkaloide, 4th Int. Symp., 1969, p. 239. Ed. K. MOTHES. Berlin: Akademie Verlag. 1972.Google Scholar
  33. 33.
    Eppenberger, U., L. Hirth, and G. Ourisson: Anaerobic Cyclisation of Squalene Oxide to Cycloartenol in Tissue Cultures of N. tabacum. Eur. J. Biochem. 8, 180 (1969).CrossRefGoogle Scholar
  34. 34.
    Furuya, T., S. Ayabe, and K. Noda: Chrysophanol and Emodin from Callus Tissue of Rhubarb (Rheum palmatum). Phytochemistry 14, 1457 (1975).CrossRefGoogle Scholar
  35. 35.
    Furuya, T., and A. Ikuta: Plant Tissue Cultures XV. Alkaloids from Callus Tissue of Papaver somniferum. Phytochemistry 11, 3041 (1972).CrossRefGoogle Scholar
  36. 36.
    Furuya, T., H. Kojima, and T. Katsuta: Plant Tissue Cultures XIV. 3-Methylpurpurin and Other Anthraquinones from Callus Tissue of Digitalis lanata. Phytochemistry 11, 1073 (1972).CrossRefGoogle Scholar
  37. 37.
    Furuya, T., K. Syono, and A. Ikuta: Plant Tissue Cultures XII. Isolation of Berberine from Callus Tissue of Coptis japonica. Phytochemistry 11, 175 (1972).CrossRefGoogle Scholar
  38. 38.
    Gamborg, O. L., F. Constabel, T. A. G. LA Rue, R. A. Miller, and W. Steck: The Influence of Hormones on Secondary Metabolite Formation in Plant Cell Cultures Proc. Int. Symp. Plant Tissue Culture, Strasbourg, p. 335 (1970).Google Scholar
  39. 39.
    Garnier, J., N. Kunesch, E. Siou, J. Poisson, G. Kunesch, and M. Koch: Study of Cultures of Tissues of Vinca minor. Isolation of a Lignan Lirioresorcinol B. Phyto-chemistry 14, 1385 (1975).Google Scholar
  40. 40.
    Gautheret, R. J.: Sur la Possibilité de Réaliser la Culture Indéfinie des Tissues de Tubercules de Carotte. Compt. Rend. 208,118 (1939).Google Scholar
  41. 41.
    Gautheret, R. J.: La Culture des Tissus Végéteaux. Paris: Masson et Cie. 1959.Google Scholar
  42. 42.
    Goad, L. J., and T. W. Goodwin: The Biosynthesis of Sterols in Higher Plants. Biochem. J. 99, 735 (1966).Google Scholar
  43. 43.
    Grisebach, H., and J. Ebel: Reduction of Cinnamic Acids to Cinamyl Alcohols with an Enzyme Preparation from Cell Suspension Cultures of Soyabean (Glycine max). FEBS Letters 30, 141 (1973).CrossRefGoogle Scholar
  44. 44.
    Grisebach, H., J. Ebel, and K. Hahlbrock: Purification and Properties of an odihydric Phenol meta-0-methyltransferase from Cell Suspension Cultures of Parsley and its Relation to Flavonoid Biosynthesis. Biochim. Biophys. Acta 268, 313 (1972).Google Scholar
  45. 45.
    Grisebach, H., and H. Fritsch: Biosynthesis of Cyanidin in Cell Cultures of Haplopappus gracilis. Phytochemistry 14, 2437 (1975).CrossRefGoogle Scholar
  46. 46.
    Grisebach, H., and K. Hahlbrock: Formation of Coenzyme A esters of Cinnamic Acids with an Enzyme Preparation from Cell Suspension Cultures of Parsley. FEBS Letters 11, 62 (1970).CrossRefGoogle Scholar
  47. 47.
    Grisebach, H., and K. Hahlbrock: Biosynthesis of Cyanidin in Cell Suspension Cultures of Haplopappus gracilis. Z. Naturforsch. B26, 581 (1971).Google Scholar
  48. 48.
    Grisebach, H., and L. Schill: Properties of a Phenolase Preparation from Cell Suspension Cultures of Parsley. Z. Physiol. Chem. 354, 1555 (1973).CrossRefGoogle Scholar
  49. 49.
    Gupta, M. P., and M. R. Gibson: Datura stramonium Sterile Root Cultures. J. Pharm. Sci. 61, 1257(1972).CrossRefGoogle Scholar
  50. 50.
    Hahlbrock, K., J. Ebel, R. Ortmann, A. Sutter, E. Wellmann, and H. Grisebach: Regulation of Enzyme Activities Related to Biosynthesis of Flavone Glycosides in Cell Suspension Cultures of Parsley (Petrosejenium hortense). Biochim. Biophys. Acta 244, 7 (1971).CrossRefGoogle Scholar
  51. 51.
    Hall, J., A. R. H. Smith, L. J. Goad, and T. W. Goodwin: The Conversion of Lanosterol, Cycloartenol and 24-Methylenecycloartanol into Poriferasterol by Ochromonas malhamensis. Biochem. J. 112, 129 (1969).Google Scholar
  52. 52.
    Hewlins, M. J. E., J. D. Ehrhardt, L. Hirth, and G. Ourisson: The Conversion of [14C] cycloartenol and [14C]lanosterol into Phytosterols by Cultures of Nicotiana tabacum. Eur. J. Biochem. 8, 184 (1969).CrossRefGoogle Scholar
  53. 53.
    Hiraoka, N., and M. Tabata: Alkaloid Production by Plants Regenerated from Cultured Cells of Datura innoxia. Phytochemistry 13, 1671 (1974).CrossRefGoogle Scholar
  54. 54.
    Hiraoka, N., M. Tabata, and M. Konoshima: Formation of Acetyltropine in Datura Callus Cultures. Phytochemistry 12, 795 (1973).CrossRefGoogle Scholar
  55. 55.
    Hösel, W., and W. Barz: Enzymatic Transformation of Flavonols with a Cell Free Preparation from Cicer arietinum. Biochim. Biophys. Acta 261, 294 (1972).CrossRefGoogle Scholar
  56. 56.
    Hösel, W., P. D. Shaw, and W. Barz: Degradation of Flavonols in Plant Cell Suspension Cultures. Z. Naturforsch. B27, 946 (1972).Google Scholar
  57. 57.
    Ikuta, A., K. Syono, and T. Furuya: Alkaloids of Callus Tissues and Redifferentiated Plantlets in the Papaveraceae. Phytochemistry 13, 2175 (1974).CrossRefGoogle Scholar
  58. 58.
    Ikuta, A., K. Syono, and T. Furuya: Plant Tissue Cultures XXIV. Alkaloids in Plants Regenerated from Coptis Callus Cultures. Phytochemistry 14, 1209 (1975).CrossRefGoogle Scholar
  59. 59.
    Impellizeri, G., and M. Piatelli: Biosynthesis of Indicaxanthin in Opuntia ficusindica Fruits. Phytochemistry 11, 2499 (1972).CrossRefGoogle Scholar
  60. 60.
    Janistyn, B., W. Barz, and R. Pohl: Degradation of 2’,4,4’,6’-tetrahydroxychalcone-2’-β-D-glucoside by Callus Suspension Cultures of Pisum sativum. Z. Naturforsch. B26, 973 (1971).Google Scholar
  61. 61.
    Jindra, A., and E. J. Staba: Datura Tissue Cultures: Arginase, Transaminase and Esterase Activities. Phytochemistry 7, 79 (1968).CrossRefGoogle Scholar
  62. 62.
    Jurd, L.: The Acid Catalyzed Conversion of 3-Hydroxyflavanones to Anthocyanidins. Phytochemistry 8, 2421 (1969).CrossRefGoogle Scholar
  63. 63.
    Konoshima, M., M. Tabata, H. Yamamoto, and N. Hiraoka: Growth and Alkaloid Production of Datura Tissue Cultures. J. Pharm. Soc. Japan 90, 370 (1970).Google Scholar
  64. 64.
    Leistner, E.: Mode of Incorporation of Precursors into Alizarin (1,2-Dihydroxy-9,10-Anthraquinone). Phytochemistry 12, 337 (1973).CrossRefGoogle Scholar
  65. 65.
    Leistner, E.: Biosynthesis of Morindone and Alizarin in Intact Plants and Cell Suspension Cultures of Morinda citrifolia. Phytochemistry 12, 1669 (1973).CrossRefGoogle Scholar
  66. 66.
    Liebisch, H. W., K. Peisker, A. S. Radwan, and H. R. Schutte: Alkaloid Biosynthesis in Datura metel Isolated Root Cultures. Z. Pflanzenphysiol. 67, 1 (1972).Google Scholar
  67. 67.
    Loewenberg, J. R.: Scopoletin and Scopolin Metabolism. Phytochemistry 9, 361 (1970).CrossRefGoogle Scholar
  68. 68.
    Miller, H. E., H. Rosler, A. Wohlpart, H. Wyler, M. E. Wilcox, H. Frohofer, T. J. Mabry, and A. S. Dreiding: Biogenesis of the Betalains. Helv. Chim. Acta 51, 1470 (1968).CrossRefGoogle Scholar
  69. 69.
    Moss, G. P., and S. A. Nicolaidis: Terpenoid Biosynthesis: the Stereochemistry of Squalene Cyclisation. Chem. Comm. 1969, 1072.Google Scholar
  70. 70.
    Murashige, T., and F. Skoog: A Revised Medium for Rapid Growth and Bioassays with Tobacco Tissue Cultures. Physiol. Plantarum 15, 473 (1962).CrossRefGoogle Scholar
  71. 70a.
    Nag, K. K., and H. E. Street: Freeze Preservation of Cultured Plant Cells. Physiol. Plantarum 34, 254 (1975).CrossRefGoogle Scholar
  72. 71.
    Nettleship, L., and M. Slaytor: Ruine: a Glucosidic β-Carboline from Peganum harmala. Phytochemistry 10, 231 (1971).CrossRefGoogle Scholar
  73. 72.
    Nettleship, L., and M. Slaytor: Limitations of Feeding Experiments in Studying Alkaloid Biosynthesis in Peganum harmala Callus Cultures. Phytochemistry 13, 735 (1974).CrossRefGoogle Scholar
  74. 73.
    Ourisson, G., B. Fritig, and L. Hirth: Biosynthesis of Scopoletin and Scopolin in Anergic Tobacco Tissue Cultured in vitro. Bull. Soc. Fr. Physiol. Veg. 13, 51 (1967).Google Scholar
  75. 74.
    Overton, K. H., and D. J. Picken: Biosynthesis of Bisabolene by Callus Cultures of Andrographis paniculata. Chem. Comm. 1976, 105.Google Scholar
  76. 75.
    Overton, K. H., and F. M. Roberts: Biosynthesis of trans, trans-and cis, trans-farnesols by Soluble Enzymes from Tissue Cultures of Andrographis paniculata. Biochem. J. 144, 585 (1974).Google Scholar
  77. 76.
    Overton, K. H., and F. M. Roberts: Interconversion of trans, trans- and -cis, trans-farnesol by Enzymes from Andrographis. Phytochemistry 13, 2741 (1974).CrossRefGoogle Scholar
  78. 77.
    Patterson, B. D., and D. P. Carew: Growth and Alkaloid Formation in Catharanthus roseus Tissue Cultures. Lloydia 32, 131 (1969).Google Scholar
  79. 78.
    Petiard, V., and Y. Demarly: Presence of Glucosides and Alkaloids in Plant Tissue Cultures. Ann. Amelior. Plantes 22, 361 (1972).Google Scholar
  80. 78a.
    Petiard, V., Y. Demarly, and R. R. Paris: Heterosides and Alkaloids in Tissue Cultures of Medicinal Plants. Plant. Med. Phytother. 6, 41 (1972).Google Scholar
  81. 79.
    Puhan, Z., and S. M. Martin: The Industrial Potential of Plant Cell Culture. Progr. in Indust. Microbiol. 9, 14 (1970).Google Scholar
  82. 80.
    Rai, P. P., T. D. Turner, and S. L. Greensmith: Anthracene Derivatives in Tissue Culture of Cassia senna L. J. Pharm. Pharmacol. 26, 722 (1974).CrossRefGoogle Scholar
  83. 81.
    Rink, E., and H. Böhm: Conversion of Reticulene into Scoulerine by a Cell Free Preparation from Macleaya microcarpa Cell Suspension Cultures. FEBS Letters 49, 396 (1975).CrossRefGoogle Scholar
  84. 82.
    Romeike, A., and H. Koblitz: Tissue Cultures of Alkaloid Bearing Plants II Datura Species. Kulturpflanze 18, 165 (1970).CrossRefGoogle Scholar
  85. 83.
    Romeike, A., and H. Koblitz: Tissue Cultures of Alkaloid Bearing Plants III Investigations Concerning the Esterification of Tropine. Kulturpflanze 20, 165 (1972).CrossRefGoogle Scholar
  86. 84.
    Saitoh, T., and S. Shibata: New Type Chalcones from Licorice Root. Tetrahedron Letters 1975, 4461.Google Scholar
  87. 85.
    Saitoh, T., S. Shibata, U. Sankawa, T. Furuya, and S. Ayabe: Biosynthesis of Echinatin. A New Biosynthetical Scheme of Retrochalcone. Tetrahedron Letters 1975, 4463.Google Scholar
  88. 86.
    Scott, A. L, and S.-L. Lee: Biosynthesis of the Indole Alkaloids. A Cell-Free System from Catharanthus roseus. J. Amer. Chem. Soc. 97, 6906 (1975).CrossRefGoogle Scholar
  89. 86a.
    Smith, A. R. H., L. J. Goad, T. W. Goodwin, and E. Lederer: Phytosterol Biosynthesis: Evidence for a 24-ethylidine Intermediate During Sterol Formation in Ochromonas malhamensis. Biochem. J. 104, 56c (1967).Google Scholar
  90. 87.
    Steck, W., B. K. Bailey, J. P. Shyluk, and O. L. Gamborg: Coumarins and Alkaloids of Cell Cultures of Ruta graveolens. Phytochemistry 10, 191 (1971).CrossRefGoogle Scholar
  91. 88.
    Steck, W., D. Boulanger, and B. K. Bailey: Formation of Edulinine and Furoquinoline Alkaloids from Quinoline Derivatives by Cell Suspension Cultures of Ruta graveolens. Phytochemistry 12, 2399 (1973).CrossRefGoogle Scholar
  92. 89.
    Steck, W., and F. Constabel: Biotransformations in Plant Cell Cultures. Lloydia 37, 185 (1974).Google Scholar
  93. 90.
    Steck, W., O. L. Gamborg, and B. K. Bailey: Increased Yields of Alkaloids Through Precursor Biotransformations in Cell Suspension Cultures of Ruta graveolens. Lloydia 36, 93 (1973).Google Scholar
  94. 91.
    Stienstra, T. M.: Formation of Mydriatic Alkaloids in Excised Root Cultures of Datura stramonium Grown on a Completely Synthetic Nutrient. Proc. K. Ned. Acad. Wet. 57, 584(1954).Google Scholar
  95. 92.
    Steward, F. C.: ed. Plant Physiology, Volume VB, Analysis of Growth: The Responses of Cells and Tissues in Culture. New York and London: Academic Press. 1969.Google Scholar
  96. 93.
    Steward, F. C., H. W. Israel, and R. L. Mott: Methods in Enzymology, eds. S. Fleischer and L. Packer, Volume 32B, p. 723. New York, San Francisco and London: Academic Press. 1974.Google Scholar
  97. 94.
    Stohs, S. J.: Production of Scopolamine and Hyoscyamine by Datura stramonium L. Suspension Cultures. J. Pharm. Sci. 58, 703 (1969).CrossRefGoogle Scholar
  98. 95.
    Stohs, S. J., B. Kaul, and E. J. Staba: Dioscorea Tissue Cultures II. Metabolism of 14C Labelled Cholesterol by Dioscorea deltoidea Suspension Cultures. Phytochemistry 8, 1679(1969).CrossRefGoogle Scholar
  99. 96.
    Stohs, S. J., and H. Rosenberg: Steroids and Steroid Metabolism in Plant Tissue Cultures. Lloydia 38, 181 (1975).Google Scholar
  100. 97.
    Stohs, S. J., J. J. Sabatka, and H. Rosenberg: Incorporation of [4-14C-22,23-3H2-] sitosterol into Diosgenin by Dioscorea deltoidea Tissue Suspension Cultures. Phytochemistry 13, 2145 (1974).CrossRefGoogle Scholar
  101. 98.
    Tabata, M., N. Hiraoka, M. Ikenoue, Y. Sano, and M. Konoshima: Production of Anthraquinones in Callus Cultures of Cassia tora. Lloydia 38, 131 (1975).Google Scholar
  102. 99.
    Tabata, M., H. Yamamoto, N. Hiraoka, and M. Konoshima: Organisation and Alkaloid Production in Tissue Cultures of Scopolia parviflora. Phytochemistry 11, 949 (1972).CrossRefGoogle Scholar
  103. 100.
    Telle, J., and R. J. Gautheret: On the Indefinite Culture of the Root of Jusquiame (Hyoscyamus Niger L.). Compt. Rend. 224, 1653 (1947).Google Scholar
  104. 101.
    Teuscher, E.: Problems in the Production of Secondary Plant Metabolites with Cell Cultures. Pharmazie 28, 6 (1973).Google Scholar
  105. 102.
    Tomita, Y., and S. Seo: Biosynthesis of the Terpenes Maslinic Acid and 3-Epimaslinic Acid in Tissue Cultures of Isodon japonicus Hara. Chem. Comm. 1973, 707.Google Scholar
  106. 103.
    Tomita, Y. S. SEO, and K. Tori: Biosynthesis of Ursene Triterpenes from [1,2-13C]-acetate in Tissue Cultures of Isodon japonicus. Reassignment of 13C NMR Signals in Urs-12-enes. Chem. Commun. 1975, 954.Google Scholar
  107. 104.
    Tomita, Y., K. Tori, and S. Seo: Biosynthesis of Oleanene and Ursene-type Triterpenes from [4-13C]mevalonic Acid in Tissue Cultures of Isodon japonicus Hara. Chem. Comm. 1975, 270.Google Scholar
  108. 105.
    Tomita, Y., K. Tori, and S. Seo: Carbon-13 NMR Spectra of Urs-12-enes and Application to Structural Assignments of Components of Isodon japonicus Hara Tissue Cultures. Tetrahedron Letters 1975, 7.Google Scholar
  109. 106.
    Tomita, Y., and A. Uomori: Mechanism of the Biosynthesis of the Ethyl Side Chain at C24 of Stigmasterol in Tissue Cultures of N. tabacum and D. tokoro. Chem. Comm. 1970, 1416.Google Scholar
  110. 107.
    Tomita, Y., and A. Uomori: Biosynthesis of Sapogenins in Tissue Cultures of Dioscorea tokoro Makino. Chem. Comm. 1971, 284.Google Scholar
  111. 108.
    Tomita, Y., and A. Uomori: Biosynthesis of Isoprenoids Part III Mechanism of Alkylation During Biosynthesis of Stigmasterol in Tissue Cultures of Higher Plants. J. Chem. Soc. Perkin I 1973, 2656.Google Scholar
  112. 109.
    Tomita, Y., and A. Uomori: Structure and Biosynthesis of Prototokoronin in Tissue Cultures of Dioscorea tokoro. Phytochemistry 13, 729 (1974).CrossRefGoogle Scholar
  113. 110.
    Tulecke, W.: Plant Tissue and Organ Culture, American Biology Teacher 25, 90 (1963).Google Scholar
  114. 111.
    Veliky, I. A., and K. M. Barber: Biotransformation of Tryptophan by Phaseolus vulgaris Suspension Culture. Lloydia 38, 125 (1975).Google Scholar
  115. 111a.
    Veliky, I. A.: Synthesis of Carboline Alkaloids by Plant Cell Cultures. Phytochemistry 11, 1405 (1972).CrossRefGoogle Scholar
  116. 112.
    White, P. R.: Potentially Unlimited Growth of Excised Plant Callus in an Artificial Nutrient. Amer. J. Botany 26, 59 (1939).CrossRefGoogle Scholar
  117. 113.
    White, P. R.: The Cultivation of Animal and Plant Cells, 2nd Edition. New York: The Ronald Press. 1963.Google Scholar
  118. 114.
    Yafin, Y., and I. Schechter: Comparison between Biosynthesis of Ent-kaurene in Germinating Tomato Seeds and Cell Suspension Cultures of Tobacco and Tomato. Plant Physiol. 56, 671 (1975).CrossRefGoogle Scholar
  119. 115.
    Yano, I., L. J. Morris, B. W. Nicholas, and A. T. James: Biosynthesis of Cyclopropane and Cyclopropene Fatty Acids in Higher Plants. Lipids 7, 35 (1972).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1977

Authors and Affiliations

  • K. H. Overton
    • 1
  • D. J. Picken
    • 1
  1. 1.Department of ChemistryUniversity of GlasgowScotland

Personalised recommendations