Skip to main content

Zusammenfassung

Die intensive Bearbeitung des Resistenzphänomens im Pflanzenreich hat ergeben, daβ höhere Pflanzen vielfach Abwehrstoffe enthalten, die einen Befall und eine Erkrankung des Pflanzengewebes durch pilzliche und bakterielle Krankheitserreger sowie durch Viren hemmen oder verhindern. Dieser stoffliche Abwehrmechanismus sowie spezielle organspezifische Strukturbarrieren und andere Resistenzfaktoren stellen allgemein einen wirksamen Schutz gegen pathogène Mikroorganismen dar. Verschiedene Pflanzenarten, vor allem einige Sorten unserer hochgezüchteten Kulturpflanzen, sind jedoch oft anfällig gegen bestimmte Erreger. Nach KRANZ (173) beruhen Pflanzenkrankheiten zu über 90% auf Infektion. Dabei bilden Mykosen den Hauptanteil. Gegenüber dem ansteigenden Auftreten von Virosen sind Bakteriosen bisher nur vereinzelt von wirtschaftlicher Bedeutung.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Adams, R., T. A. Geissman, and J. D. Edwards: Gossypol, a Pigment of Cotton Seed. Chem. Reviews 60, 555 (1960).

    CAS  Google Scholar 

  2. Akazawa, T.: Chromatographie Isolation of Pure Ipomeamarone and Reinvestigation on its Chemical Properties. Arch. Biochem. Biophysics 90, 82 (1960).

    CAS  Google Scholar 

  3. Akazawa, T.: Biosynthesis of Ipomeamarone. II. Synthetic mechanism. Arch. Biochem. Biophysics 105, 512 (1964).

    CAS  Google Scholar 

  4. Akazawa, T., and J. Uritani: Biosynthesis of Ipomeamarone. The Incorporation of Acetate-2-14C into Ipomeamarone. Agric. Biol. Chem. 26, 131 (1962).

    CAS  Google Scholar 

  5. Akazawa, T., I. Uritani, and Y. Akazawa: Biosynthesis of Ipomeamarone. I. The Incorporation of Acetate-2-14C and Mevalonate-2-14C into Ipomeamarone. Arch. Biochem. Biophysics 99, 52 (1962).

    CAS  Google Scholar 

  6. Akazawa, T., I. Uritani, and H. Kubota: Isolation of Ipomeamarone and Two Coumarin Derivatives from Sweet Potato Roots Injured by the Weevil, Cylas formi-carius elegantulus. Arch. Biochem. Biophysics 88, 150 (1960).

    CAS  Google Scholar 

  7. Akazawa, T., and K. Wada: Analytical Study of Ipomeamarone and Chlorogenic Acid Alterations in Sweet Potato Roots Infected by Ceratocystis fimbriata. Plant Physiol. 36, 139 (1961).

    CAS  Google Scholar 

  8. Allen, E. H., and C. A. Thomas: trans-trans-3, 11-Trideeadiene-5,7,9-triyne-l,2-diol, an antifungal Polyacetylene from Diseased Safflower (Carthamus tinctorius). Phyto-chemistry 10, 1579 (19

    CAS  Google Scholar 

  9. Allen, E. H., and C. A. Thomas: A Second Antifungal Polyacetylene Compound from Phytophthora-infected Safflower. Phytopathology 61, 1107 (1971).

    CAS  Google Scholar 

  10. Allen, E. H., and C. A. Thomas: Time Course of Safynol Accumulation in Resistant and Susceptible Safflower Infected with Phytophthora drechsleri. Physiol. Plant Pathol. 1, 235 (1971).

    CAS  Google Scholar 

  11. Avazkhodzhaev, M. KH., and Z. M. Muslimov: Physiological-biochemical Study of the Wilt Resistance of the Cotton Plant. Fiziol. Biokhim. Khlop. 1972, 213. Edit. YULDASHEV, S. KH.,“Fan”, Taschkent; Chem. Abstr. 80, 118327s (1974).

    Google Scholar 

  12. Bailey, J. A.: Phytoalexin Production by Leaves of Pisum sativum in Relation to Senescence. Ann. Appl. Biol. 64, 315 (1969).

    CAS  Google Scholar 

  13. Bailey, J. A.: Pisatin Production by Tissue Cultures of Pisum sativum L. J. gen. Microbiol. 61, 409 (1970).

    CAS  Google Scholar 

  14. Bailey, J. A.: Phytoalexins and the Ability of Leaf Tissues to Inhibit Fungal Growth. Ecol. Leaf Surface Micro-Organisms, Proc. Int. Symp. 1970 (Pub. 1971), edited by PREECE, T. F., Academic Press, p. 519.

    Google Scholar 

  15. Bailey, J. A.: Production of Antifungal Compounds in Cowpea (Vigna sinensis) and Pea (Pisum sativum) after Virus Infection. J. gen. Microbiol. 75, 119 (1973).

    CAS  Google Scholar 

  16. Bailey, J. A.: Relation Between Symptom Expression and Phytoalexin Concentration in Hypo-cotyls of Phaseolus vulgaris Infected with Colletotrichum lindemuthianum. Physiol. Plant Pathol. 4, 477 (1974).

    CAS  Google Scholar 

  17. Bailey, J. A., and R. S. Burden: Biochemical Changes and Phytoalexin Accumulation in Phaseouls vulgaris Following Cellular Browning Caused by Tobacco Necrosis Virus. Physiol. Plant Pathol. 3, 171 (1973).

    CAS  Google Scholar 

  18. Bailey, J. A., R. S. Burden, and G. G. Vincent: Capsidiol: An Antifungal Compound Produced in Nicotiana tabacum and Nicotiana clevelandii Following Infection with Tobacco Necrosis Virus. Phytochemistry 14, 597 (1975).

    CAS  Google Scholar 

  19. Bailey, J. A., and B. J. Deverall: Formation and Activity of Phaseollin in the Interaction Between Phaseolus vulgaris Hypocotyls and Physiological Races of Colletotrichum lindemuthianum. Physiol. Plant Pathol. 1, 435–449 (1971).

    CAS  Google Scholar 

  20. Bailey, J. A., and J. L. Ingham: Phaseollin Accumulation in Phaseolus vulgaris in Response to Infection by Tobacco Necrosis Virus and the Rust Uromyces appendi-culatus. Physiol. Plant Pathol. 1, 451 (1971).

    CAS  Google Scholar 

  21. Bailey, J. A., G. G. Vincent, and R. S. Burden: The Antifungal Activity of Glutinosone and Capsidiol and Their Accumulation in Virus-Infected Tobacco Species. Physiol. Plant Pathol. 8 (1), 35 (1976).

    CAS  Google Scholar 

  22. Baker, F. C, and C. J. W. Brooks: Biosynthesis of the Sesquiterpenoid Capsidiol, in Sweet Pepper Fruits Inoculated with Fungal Spores. Phytochemistry 15, 689 (1976).

    CAS  Google Scholar 

  23. Baker, F. C., C. J. Brooks, and S. A. Hutchinson: Biosynthesis of Capsidiol in Sweet Peppers (Capsicum frutescens) Infected with Fungi: Evidence for Methyl Group Migration from 13C Nuclear Magnetic Resonance Spectroscopy. Chem. Commun. 1975, 293.

    Google Scholar 

  24. Baugher, W. L., and T. C. Campbell: Gossypol Detoxication by Fungi. Science 164, 1526 (1969).

    CAS  Google Scholar 

  25. Beijersbergen, J. C. M., and C. B. G. Lemmers: Enzymic and Non-enzymic Liberation of Tulipalin A (α-methylene butyrolactone) in Extracts of Tulip. Physiol. Plant Pathol. 2, 265 (1972).

    CAS  Google Scholar 

  26. Bell, A. A.: Formation of Gossypol in Infected or Chemically Irritated Tissues of Gossypium species. Phytopathology 57, 759 (1967).

    CAS  Google Scholar 

  27. Bell, A. A.: Phytoalexin Production and Verticillium Wilt Resistance in Cotton. Phytopathology 59, 1119 (1969).

    CAS  Google Scholar 

  28. Bell, A. A.: In: Biological Control of Plant Insects and Diseases (MAXWELL, F. G., ed.), p. 403. Mississippi State: University Press. 1974.

    Google Scholar 

  29. Bell, A. A., and J. T. Presley: Temperature Effects upon Resistance and Phytoalexin Synthesis in Cotton Inoculated with Verticillium albo-atrum. Phytopathology 59, 1141 (1969).

    Google Scholar 

  30. Bell, A. A., and R. D. Stipanovic: Proc. Beltwide Cotton Prod. Res. Conf., p. 87, National Cotton Council, Memphis, Tenn. 1972.

    Google Scholar 

  31. Bell, A. A., R. D. Stipanovic, C. R. Howell, and P. A. Fryxell: Antimicrobial Terpenoids of Gossypium: Hemigossypol, 6-Methoxyhemigossypol and 6-Deoxy-hemigossypol. Phytochemistry 14, 225 (1975).

    CAS  Google Scholar 

  32. Berardi, L. C, and L. A. Goldblatt: In: Toxic Constituents of Plant Foodstuffs, p. 211. New York: Academic Press. 1969.

    Google Scholar 

  33. Bergman, B. H. H., J. C. M. Beijersbergen, J. C. Overeem, and A. K. Sijpesteijn: Isolation and Identification of α-Methylenebutyrolactone, a Fungitoxic Substance from Tulips. Recueil Trav. chim. Pays-Bas 86, 709 (1967).

    CAS  Google Scholar 

  34. Bevan, C. W. L., A. J. Birch, B. Moore, and S. K. Mukerjee: A Partial Synthesis of (±)-Pisatin: Some Remarks on the Structure and Reactions of Pterocarpin. J. chem. Soc. (London) 1964, 5991.

    Google Scholar 

  35. Bhakuni, D. S., M. M. Dhar, and V. N. Sharma: The Chemistry of Thespesin. Ex-perientia 24, 109 (1968).

    CAS  Google Scholar 

  36. Biehn, W. L., J. Kuc, and E. B. Williams: Accumulation of Phenols in Resistant Plant-fungi Interactions. Phytopathology 58, 1255 (1968).

    CAS  Google Scholar 

  37. Biehn, W. L, E. B. Williams, and J. Kuc: Fungitoxicity of Phenols Accumulating in Glycine max-fungi Interactions. Phytopathology 58, 1261 (1968).

    CAS  Google Scholar 

  38. Bilton, J. N., J. R. Debnam, and I. M. Smith: 6a-Hydroxypterocarpans from Red Clover. Phytochemistry 15, 1411 (1976).

    CAS  Google Scholar 

  39. Birch, A. J., and F. R. S. Phil: Some Natural Antifungal Agents. Chem. Ind. 1966, 1173.

    Google Scholar 

  40. Birch, A. J., B. Moore, S. K. Mukerjee, and C. W. L. Bevan: A Partial Synthesis of (±)-Pisatin from Pterocarpin. Tetrahedron Letters 1962, 673.

    Google Scholar 

  41. Birnbaum, G. L, C. P. Huber, M. L. Post, J. B. Stothers, J. R. Robinson, A. Stoessl, and E. B. Ward: Sesquiterpenoid Stress Compounds of Datura stramonium: Biosynthesis of the Three Major Metabolites from (1,2-13C) Acetate and the X-Ray Structure of 3-Hydroxylubimin. Chem. Commun. 1976, 330.

    Google Scholar 

  42. Birnbaum, G. L, A. Stoessl, S. H. Grover, and J. B. Stothers: The Complete Stereo-structure of Capsidiol. X-ray Analysis and 13C-Nuclear Magnetic Resonance of Eremophilane Derivatives Having trans-Vicinal Methyl Groups. Canad. J. Chem. 52, 993 (1974).

    CAS  Google Scholar 

  43. Bohlmann, F., S. Köhn, und G. Arndt: Polyacetylenverbindungen. CXIV. Die Polyine der Gattung Carthamus L. Chem. Ber. 99, 3433 (1966); BOHLMANN, F., and C. ZDERO: Polyacetylenverbindungen. 182. Weitere Acetylenverbindungen aus Carthamus tinctorius L. Chem. Ber. 103, 2853 (1970).

    CAS  Google Scholar 

  44. Boller, A., H. Corrodi, E. Gäumann, E. Hardegger, H. Kern, und N. Winterhalter-Wild: Welkstoffe und Antibiotika. Über induzierte Abwehrstoffe bei Orchideen. I. Helv. Chim. Acta 40, 1062 (1957).

    Google Scholar 

  45. Bonde, M. R., R. L. Millar, and J. L. Ingham: Induction and Identification of Sativan and Vestitol as Two Phytoalexins from Lotus corniculatus. Phytochemistry 12, 2957 (1973).

    CAS  Google Scholar 

  46. Bridge, M., and W. L. Klarman: Ultraviolet Induction of an Antifuncal Chemical in Soybeans. Phytopathology 60, 1013 (1970).

    Google Scholar 

  47. Bridge, M. A., and W. L. Klarman: Soybean Phytoalexin, Hydroxyphaseollin, Induced by UV-Irradiation. Phytopathology 63, 606 (1973).

    CAS  Google Scholar 

  48. Brongersma-Oosterhoff, U. W.: Structure Determination of the Allergenic Agent, Isolated from Tulip Bulbs. Recueil Trav. chim. Pays-Bas 86, 705 (1967).

    CAS  Google Scholar 

  49. Bukhari, S. T. K., and R. D. Guthrie: Structure of Rishitin. An Example of the Use of Cuprammonium Complexing in Structural Elucidation. J. Chem. Soc. (London) C 1969, 1073.

    Google Scholar 

  50. Burden, R. S., and J. A. Bailey: Structure of the Phytoalexin from Soybean. Phytochemistry 14, 1389 (1975).

    CAS  Google Scholar 

  51. Burden, R. S., J. A. Bailey, and G. W. Dawson: Structures of 3 New Isoflavanoids from Phaseolus vulgaris Infected with Tobacco Necrosis Virus. Tetrahedron Letters 1972, 4175.

    Google Scholar 

  52. Burden, R. S., J. A. Bailey, and G. G. Vincent: Metabolism of Phaseolin by Col-letotrichum lindemuthianum. Phytochemistry 13, 1789 (1974).

    CAS  Google Scholar 

  53. Burden, R. S., J. A. Bailey, and G. G. Vincent: Glutinosone, a New Antifungal Sesquiterpene from Nicotiana glutinosa Infected with Tobacco Mosaic Virus. Phytochemistry 14, 221 (1975).

    CAS  Google Scholar 

  54. Burden, R. S., P. M. Rogers, and R. L. Wain: Fungicides. XVI. Natural Resistance of Plant Roots to Fungal Pathogens. Ann. Appl. Biol. 78, 59 (1974).

    CAS  Google Scholar 

  55. Burka, L. T., L. Kuhnert, B. J. Wilson, and T. M. Harris: 4-Hydroxymyoporone, a Key Intermediate in the Biosynthesis of Pulmonary Toxins Produced by Fusarium solani Infected Sweet Potatoes. Tetrahedron Letters 1974, 4017.

    Google Scholar 

  56. Cardoso, C. O. N., and M. O. Garraway: Production of Phenols and Phytoalexins in Hypocotyls of Beans Infected with Fusarium solani f. phaseoli. Summa Phytopathol. 1, 92 (1975); Chem. Abstr. 84, 14763 x (1976).

    CAS  Google Scholar 

  57. Chalova, L. L, N. L. Vasynkova, O. L. Ozeretshovskaya, and L. V. Metlitskii: Chemical Identifikation of One of the Potato Phytoalexins. Prikl. Biochim. Microbiol. 7, 55 (1971); C. A. 74, 95634 (1971).

    CAS  Google Scholar 

  58. Chamberlain, D. W., and J. D. Paxton: Protection of Soybean Plants by Phytoalexin. Phytopathology 58, 1349 (1968).

    CAS  Google Scholar 

  59. Christenson, J. A.: The Degradation of Pisatin by Pea Pathogens. Phytopathology 59, 10 (1969).

    Google Scholar 

  60. Christenson, J. A., and L. A. Hadwiger: Induction of Pisatin Formation in the Pea Foot Region by Pathogenic and Nonpathogenic Clones of Fusarium solani. Phytopathology 63, 784 (1973).

    CAS  Google Scholar 

  61. Coxon, D. T., and R. F. Curtis: Ipomeamarone, a Toxic Furanoterpenoid in Sweet Potatoes (Ipomea batatas) in the United Kingdom. Food Cosmet.Toxicol. 13, 87 (1975).

    CAS  Google Scholar 

  62. Coxon, D. T., R. F. Curtis, K. R. Price, and B. Howard: Phytuberin: a Novel Antifungal Terpenoid from Potato. Tetrahedron Letters 1974, 2363.

    Google Scholar 

  63. Coxon, D. T., K. R. Price, B. Howard, S. F. Osman, E. B. Kalan, and R. M. ZA-Charius: Two New Vetispirane Derivatives: Stress Metabolites from Potato (Solanum tuberosum) Tubers. Tetrahedron Letters 1974, 2921.

    Google Scholar 

  64. Crombie, L., G. Kneen, and G. Pattenden: Synthesis of Casbene. Chem. Commun. 1976, 66.

    Google Scholar 

  65. Cruickshank, I. A. M.: Studies on Phytoalexins IV. The Antimicrobial Spectrum of Pisatin. Austral. J. biol. Sci. 15, 147 (1962).

    CAS  Google Scholar 

  66. Cruickshank, I. A. M.: Phytoalexins. Annu. Rev. Phytopathol. 1, 351 (1963).

    CAS  Google Scholar 

  67. Cruickshank, I. A. M.: Phytoalexins in the Leguminosae with Special Reference to Their Selective Toxicity. Tag. Ber. dt. Akad. Landw. Wiss. Berlin 74, 313 (1965).

    Google Scholar 

  68. Cruickshank, I. A. M., D. R. Biggs, D. R. Perrin, and C. P. Whittle: Phaseollin and Phaseollidin Relationships in Infection-Droplets on Endocarp of Phaseolus vulgaris. Physiol. Plant Pathol. 4, 261 (1974).

    CAS  Google Scholar 

  69. Cruickshank, I. A. M., and D. R. Perrin: Isolation of a Phytoalexin from Pisum sativum L. Nature (London) 187, 799 (1960).

    CAS  Google Scholar 

  70. Cruickshank, I. A. M., and D. R. Perrin: Studies on Phytoalexins. III. The Isolation, Assay and General Properties of a Phytoalexin from Pisum sativum. Austral. J. biol. Sci. 14, 336 (1961).

    CAS  Google Scholar 

  71. Cruickshank, I. A. M., and D. R. Perrin: Phytoalexins of the Leguminosae. Phaseollin from Phaseolus vulgaris L. Life Sciences 2, 680 (1963).

    CAS  Google Scholar 

  72. Cruickshank, I. A. M., and D. R. Perrin: Studies on Phytoalexins. VI. Pisatin; the Effect of Some Factors on its Formation in Pisum sativum L. and the Significance of Pisatin in Disease Resistance. Austral. J. biol. Sci. 16, 111 (1963).

    CAS  Google Scholar 

  73. Cruickshank, I. A. M., and D. R. Perrin: Studies on Phytoalexins. VIII. The Effect of Some Further Factors on the Formation, Stability and Localization of Pisatin in vivo. Austral. J. biol. Sci. 18, 817 (1965).

    CAS  Google Scholar 

  74. Cruickshank, I. A. M., and D. R. Perrin: Studies on Phytoalexins. IX. Pisatin Formation by Cultivars of Pisum sativum L. and Other Pisum species. Austral. J. biol. Sci. 18, 829 (1965).

    CAS  Google Scholar 

  75. Cruickshank, I. A. M., and D. R. Perrin: Studies of Phytoalexins. X. Effect of Oxygen Tension on the Biosynthesis of Pisatin and Phaseollin. Phytopathol. Z. 60, 335 (1967).

    CAS  Google Scholar 

  76. Cruickshank, I. A. M., and D. R. Perrin: The Isolation and Partial Characterization of Monilicolin A, a Polypeptide with Phaseollin-inducing Activity from Monilinia fructicola. Life Science 7, 449 (1968).

    CAS  Google Scholar 

  77. Cruickshank, I. A. M., and D. R. Perrin: Studies on Phytoalexins. XL The induction, Antimicrobial Spectrum and Chemical Assay of Phaseollin. Phytopathol. Z. 70, 209 (1971).

    CAS  Google Scholar 

  78. Cruickshank, I. A. M., J. Veeraraghavan, and D. R. Perrin: Physical Factors Affecting the Formation and/or Net Accumulation of Medicarpin in Infection Droplets on White Clover Leaflets. Austral. J. Plant Physiol. 1, 149 (1974).

    CAS  Google Scholar 

  79. Currier, W. W., and J. Kuc: Effect of Temperature on Rishitin and Steroid Glycoalkaloid Accumulation in Potato Tuber. Phytopathology 65, 1194 (1975).

    CAS  Google Scholar 

  80. Cutler, H. G., and R. J. Cole: Properties of a Plant Growth Inhibitor Extracted from Immature Tobacco Leaves. Plant Cell Physiol. 15, 19 (1974).

    CAS  Google Scholar 

  81. Datta, S. C, V. V. S. Murti, and T. R. Seshadri: Isolation und Study of (+)-Gossypol from Thespesia populnea. Indian J. Chem. 10, 263 (1972).

    CAS  Google Scholar 

  82. Datta, S. C, V. V. S. Murti, and T. R. Seshadri: Stereochemistry of Gossypol. Current Sci. 41, 545 (1972).

    CAS  Google Scholar 

  83. Dechary, J. M., and P. Pradel: Occurrence of (+)-Gossypol in Gossypium species. J. Amer. Oil Chem. Soc. 48, 563 (1971).

    CAS  Google Scholar 

  84. Deverall, B. J.: Biochemical Changes in Infection Droplets Containing Spores of Botrytis spp. Incubated in the Seed Carities of Pods of Bean (Vicia faba L.) Ann. Appl. Biol. 59, 375 (1967).

    CAS  Google Scholar 

  85. Deverall, B. J.: Phytoalexins. Phytochem. Ecol., Proc. Phytochem. Soc. Symp. 1971 (Pub. 1972), 217; Edit. J. B. HARBORNE. London: Academic Press.

    Google Scholar 

  86. Deverall, B. J.: Phytoalexins and Disease Resistance. Proc. Roy. Soc. (London), Ser. B, 233 (1972).

    Google Scholar 

  87. Deverall, B. J., and P. M. Rogers: The Effect of pH and Composition of Test Solutions on the Inhibitory Activity of Wyerone Acid Towards Germination of Fungal Spores. Ann. Appl. Biol. 72, 301 (1972).

    CAS  Google Scholar 

  88. Deverall, B. J., and J. C. Vessey: Role of a Phytoalexin in Controlling Lesion Development in Leaves of Vicia faba after infection by Botrytis spp. Ann. Appl. Biol. 63, 449 (1969).

    CAS  Google Scholar 

  89. Dewick, P. M.: Pterocarpan Biosynthesis: 2′-Hydroxyisoflavone and-isoflavanon Precursors of Demethylhomopterocarpin in Red Clover. Chem. Commun. 1975, 656.

    Google Scholar 

  90. Dewick, P. M.: Pterocarpan Biosynthesis: Chalcone and Isoflavone Precursors of Demethylhomopterocarpin and Maackiain in Trifolium pratense. Phytochemistry 14, 979 (1975).

    CAS  Google Scholar 

  91. Dyakov, YU. T., L. V. Metlitskh, O. L. Ozeretskovskaya, and L. A. Yurganova: Inflectivity and Virulence of Phytophthora infestans in Relation to the Ability of the Fungus to Induce Rishitin Production. Mikol. Fitopatol. 7, 208 (1973); C. A. 80, 24741v (1974).

    CAS  Google Scholar 

  92. Edwards, J. D., Jr.: Synthesis of Gossypol and Gossypol Derivates. J. Amer. Oil Chem. Soc. 47, 441 (1970).

    CAS  Google Scholar 

  93. Eluaghy, M. A., and R. Heitefuss: Permeability Changes and Production of Anti-fungal Compounds in Phaseolns vulgaris infected with Uromyces phaseoli. II. Role of Phytoalexins. Physiol. Plant Pathol. 8, 269 (1976).

    Google Scholar 

  94. Fawcett, C. H.: Antifungal Compounds in Plants; Some Recent Developments. Int. Pestic. Congr. 5, 18 (1963); Antifungal Compounds in Seedlings of Vicia faba. Chemical Results. Society of Chem. Industry Monographs 15, 119 (1961).

    Google Scholar 

  95. Fawcett, C. H., R. D. Firn, and D. M. Spencer: Wyerone Increase in Leaves of Broad Bean (Vivia faba L.) after infection by Botrytis fabae. Physiol. Plant Pathol. 1, 163 (1971).

    Google Scholar 

  96. Fawcett, C. H., and D. M. Spencer: Plant Chemotherapy with Natural Products. Annu. Rev. Phytopathol. 8, 403 (1970).

    CAS  Google Scholar 

  97. Fawcett, C. H., M. Spencer, and R. L. Wain: The Isolation and Properties of a Fungicidal Compound Present in Seedlings of Vicia faba. Neth. J. Plant Pathol. 75, 72 (1969).

    CAS  Google Scholar 

  98. Fawcett, C. H., D. M. Spencer, R. L. Wain, A. G. Fallis, E. R. H. Sir Jones, M. Le Quan, C. B. Page, V. Thaller, D. C. Shubrook, and P. M. Whitham: Natural Acetylenes. XXVII. An Antifungal Acetylenic Furanoid Keto-ester (Wyerone) from Shoots of the Broad Bean (Vicia faba L.; Fam. Papilionaceae). J. chem. Soc. (C)1968, 2455.

    Google Scholar 

  99. Fawcett, C. EL, D. M. Spencer, R. L. Wain, E. R. H. Jones, M. Le Quan, C. B. Page, and V. Thaller: An Antifungal Acetylenic Keto-ester from a Plant of the Papiliona-ceae Family. Chem. Commun. 1965, 422.

    Google Scholar 

  100. Fisch, M. H., B. H. Flick, and J. Arditti: Structure and Antifungal Activity of Hircinol, Loroglossol and Orchinol. Phytochemistry 12, 437 (1973).

    CAS  Google Scholar 

  101. Fukui, K., and M. Nakayama: Total Synthesis of (±)-Pterocarpin and (±)-Pisatin. Tetrahedron Letters 1966, 1805.

    Google Scholar 

  102. Fukui, K., M. Nakayama, and T. Harano: The Synthesis of 3-Hydroxy-8,9-di-methoxy-pterocarpan. Bull. chem. Soc. Japan 42, 233 (1969).

    CAS  Google Scholar 

  103. Gäumann, E.: Nouvelles domées sur les réactions chimiques de défense chez les Orchidées. C. R. hebd. Séances Acad. Sci. 250, 1944 (1960).

    Google Scholar 

  104. Gäumann, E.: Sur les réactions de défense chimique chez les Orchidées. C. R. hebd. Séances Acad. Sci. 257, 2372 (1963).

    Google Scholar 

  105. Gäumann, E.: Weitere Untersuchungen über die chemische Infektabwehr der Orchideen. Phyto-pathol. Z. 49, 211 (1963).

    Google Scholar 

  106. Gäumann, E., und H. R. Hohl: Weitere Untersuchungen über die chemischen Abwehrreaktionen der Orchideen. Phytopathol. Z. 38, 93 (1960).

    Google Scholar 

  107. Gäumann, E., und H. Kern: Über die Isolierung und den chemischen Nachweis des Orchinols. Phytopathol. Z. 35, 347 (1959).

    Google Scholar 

  108. Gäumann, E., und H. Kern: Über chemische Abwehrreaktionen bei Orchideen. Phytopathol. Z. 36, 1 (1959).

    Google Scholar 

  109. Gäumann, E., und H. Kern: Sur les réactions de défense chimiques chez les orchidées. C. R. hebd. Séances Acad. Sci. 248, 2542 (1959).

    Google Scholar 

  110. Gäumann, E., J. Nuesch, und R. H. Rimpau: Weitere Untersuchungen über die chemische Abwehrreaktion der Orchideen. Phytopathol. Z. 38, 274 (1960).

    Google Scholar 

  111. Gombos, M., K. Szendrei, J. Novak, and J. Reisch: Nitrogenmentes fenantren-szarmazek izolalasa az opiumbol. Herb. Hungarica 13, 63 (1974).

    CAS  Google Scholar 

  112. Geigert, J., F. R. Stermitz, G. Johnson, D. Maag, and D. K. Johnson: TWO Phytoalexins from Sugar Beet (Beta vulgaris) Leaves. Tetrahedron 29, 2703 (1973).

    CAS  Google Scholar 

  113. Gordon, M., A. Stoessl, and J. B. Stothers: NMR Studies XXV. Postinfectional Inhibitors from Plants. IV. Structure of Capsidiol, an Antifungal Sesquiterpene from Sweet Pappers. Canad. J. Chem. 51, 748 (1973).

    CAS  Google Scholar 

  114. Gray, G., W. L. Klarman, and M. Bridge: Relative Quantities of Antifungal Metabolites Produced in Resistant and Susceptible Soybean Plants Inoculated with Phytoph-thora megasperma var. sojae and Closely Related Non-pathogenic Fungi. Canad. J. Bot. 46, 285 (1968).

    CAS  Google Scholar 

  115. Gray, J. R., T. J. Mabry, A. A. Bell, R. D. Stipanovic, and M. J. Lukefahr: para-Hemigossypolone: a Sequiterpenoid Aldehyde Quinone from Gossypium hirsutum. Chem. Commun. 1976, 109.

    Google Scholar 

  116. Gross, D.: Growth Regulating Substances of Plant Origin. Phytochemistry 14, 2105 (1975).

    CAS  Google Scholar 

  117. Hadwiger, L. A.: The Biosynthesis of Pisatin. Phytochemistry 5, 523 (1966).

    CAS  Google Scholar 

  118. Hadwiger, L. A.: Changes in Host-Metabolism Associated with Phytoalexin Production. Phytopathology 57, 813 (1967).

    Google Scholar 

  119. Hadwiger, L. A.: Specificity of DNA Intercalating Compounds in the Control of Phenylalanine Ammonia Lyase and Pisatin Levels. Plant Physiol. 47, 346 (1971).

    CAS  Google Scholar 

  120. Hadwiger, L. A., S. L. Hess, and S. VON Broembsen: Stimulation of Phenylalanine Ammonialyase Activity and Phytoalexin Production. Phytopathology 60, 332 (1970).

    CAS  Google Scholar 

  121. Hadwiger, L. A., A. Jafri, S. Von Broembsen, and E. Robert: Mode of Pisatin Induction. Increased Template Activity and Dye-Bindung Capacity of Chromatin Isolated and from Polypeptide Treated Pea Pods. Plant Physiol. 53, 52 (1974).

    CAS  Google Scholar 

  122. Hadwiger, L. A., and M. E. Schwochau: Induction of Phenylalanine Ammonialyase and Pisatin in Pea Pods by Polylysine, Spermidine or Histone Fractions. Biochem. Biophys. Res. Commun. 38, 683 (1970).

    CAS  Google Scholar 

  123. Hadwiger, L. A., and M. E. Schwochau: Ultraviolet Light-induced Formation of Pisatin and Phenylalanine Ammonia Lyase. Plant Physiol. 47, 588 (1971).

    CAS  Google Scholar 

  124. Harada, N., and K. Nakanishi: A Method for Determining the Chiralities of Optically Active Glycols. J. Am. Chem. Soc. 91, 3989 (1969).

    CAS  Google Scholar 

  125. Hardegger, E., H. R. Biland, and H. Corrodi: Welkstoffe und Antibiotika. Synthese von 2,4-Dimethoxy-6-hydroxy-phenanthren und Konstitution des Orchinols. Helv. Chim. Acta 46, 1354 (1963).

    Google Scholar 

  126. Hardegger, E., N. Rigassi, J. Seres, C. Egli, P. Müller, and K. O. Fitzi: Welkstoffe und Antibiotika. Synthese von 2,4-Dimethoxy-6-hydroxy-9,10-dihydrophenanthren. Helv. Chim. Acta 46, 2543 (1963).

    CAS  Google Scholar 

  127. Hardegger, E., M. Schellenbaum, und H. Corrodi: Welkstoffe und Antibiotika. Über induzierte Abwehrstoffe der Orchideen. II. Helv. Chim. Acta 46, 1171 (1963).

    CAS  Google Scholar 

  128. Hargreaves, J. A., and J. W. Mansfield: Phytoalexin Production by Vicia faba in Response to Infection by Botrytis. Ann. Appl. Biol. 81, 271 (1975).

    CAS  Google Scholar 

  129. Hargreaves, J. A., J. W. Mansfield, and D. T. Coxon: Conversion of Wyerone to Weyerol by Botrytis cinerea and B.fabae in vitro. Phytochemistry 15, 651 (1976).

    CAS  Google Scholar 

  130. Hargreaves, J. A., J. W. Mansfield, D.T. Coxon, and K. R. Price: Wyerone Epoxide as a Phytoalexin in Vicia faba and its Metabolism by Botrytis cinerea and B. fabae in vitro. Phytochemistry 15, 1119 (1976).

    CAS  Google Scholar 

  131. Hargreaves, J. A., J. W. Mansfield, and D. T. Coxon: Identification of Medicarpin as a Phytoalexin in the Broad Bean Plant (Vicia faba L.). Nature 262, 318 (1976).

    Google Scholar 

  132. Harro Wer, K. M.: Differential Effects of Phytoalexin from Pisum sativum on Two Races of Ascochyta pisi. Trans. Brit. Mycol. Soc. 61, 383 (1973).

    CAS  Google Scholar 

  133. Hart, J. H., and W. E. Hillis: Inhibition of Wood-rotting Fungi by Stilbenes and Other Polyphenols in Eucalyptus sideroxylon. Phytopathology 64, 939 (1974).

    CAS  Google Scholar 

  134. Hasegawa, K., and T. Hashimoto: Quantitative Changes of Batatasins and Abscisic Acid in Relation to the Development of Dormancy in Yam Bulbils. Plant Cell Physiol. 14, 369 (1973); Gibberellin-induced Dormancy and Batatasin Content in Yam Bulbils. Plant Cell Physiol. 15, 1 (1974).

    CAS  Google Scholar 

  135. Hashimoto, T., K. Hasegawa, and A. Kawarada: Batatasins: New Dormancy-inducing Substances of Yam Bulbils. Planta (Berlin) 108, 369 (1972).

    CAS  Google Scholar 

  136. Hashimoto, T., K. Hasegawa, H. Yamaguchi, M. Saito, and S. Ishimoto: Structure and Synthesis of Batatasins, Dormancy-inducing Substances of Yam Bulbils. Phytochemistry 13, 2849 (1974).

    CAS  Google Scholar 

  137. Heath, M. C, and V. J. Higgens: Degradation of Phaseollin and Pisatin by Stemphylium botryosum. Phytopathology 62, 763 (1972).

    Google Scholar 

  138. Heath, M. C, and V. J. Higgens: In vitro and in vivo Conversion of Phaseollin and Pisatin by an Alfalfa Pathogen Stemphylium botryosum. Physiol. Plant Pathol. 3, 107 (1973).

    CAS  Google Scholar 

  139. Heinstein, P. F., D. L. Herman, S. B. Tove, and F. H. Smith: Biosynthesis of Gossypol. Incorporation of Mevalonate-2-14C and Isoprenyl Pyrophosphates. J. Biol. Chem. 245, 4658 (1970).

    Google Scholar 

  140. Heinstein, P. F., F. H. Smith, and S. B. Tove: Biosynthesis of 14C-Labeled Gossypol. J. Biol. Chem. 237, 2643 (1962).

    CAS  Google Scholar 

  141. Hess, S., and L. Hadwiger: The Induction of Phenylalanine Ammonia Lyase and Phaseollin by 9-Aminoacridine and Other Deoxyribonucleic Acid Intercalating Compounds. Plant Physiol. 48, 197 (1971).

    CAS  Google Scholar 

  142. Hess, S. L., L. A. Hadwiger, and M. E. Schwochau: Studies on Biosynthesis of Phaseollin in Excised Pods of Phaseolus vulgaris. Phytopathology 61, 79 (1971).

    CAS  Google Scholar 

  143. Hess, S. L., and M. E. Schwochau: Induction, Purification and Biosynthesis of Phaseollin in Excised Pods of Phaseolus vulgaris. Phytopathology 59, 1030 (1969).

    Google Scholar 

  144. Heuvel, J. Van Den, and H. D. Van Etten: Alteration of Phaseollin by Fusarium solanif. sp. phaseoli. Phytopathology 62, 794 (1972).

    Google Scholar 

  145. Heuvel, J. Van Den, and H. D. Van Etten: Detoxification of Phaseollin by Fusarium solani f. sp. phaseoli. Physiol. Plant Pathol. 3, 327 (1973).

    Google Scholar 

  146. Heuvel, J. Van Den, H. D. Van Etten, J. W. Serum, D. L. Coffen, and T. H. Williams: Identification of 1 a-Hydroxyphaseollone, a Phaseollin Metabolite Produced by Fusarium solani. Phytochemistry 13, 1129 (1974).

    Google Scholar 

  147. Higgins, V. J.: Role of the Phytoalexin Medicarpin in Three Leaf Spot Diseases of Alfalfa. Physiol. Plant Pathol. 2, 289 (1972).

    CAS  Google Scholar 

  148. Higgins, V. J.: Induced Conversion of the Phytoalexin Maackiain to Dihydromaackiain by the Alfalfa Pathogen Stemphylium botryosum. Physiol. Plant Pathol. 6, 5 (1975).

    CAS  Google Scholar 

  149. Higgins, V. J., and R. L. Millar: Phytoalexin Production by Alfalfa in Response to Infection by Colletrotrichum phomoides. Helminthosporium turcicum, Stemphylium loti, and S. botryosum. Phytopathology 58, 1377 (1968).

    CAS  Google Scholar 

  150. Comparative Abilities of Stemphylium botryosum and Helminthosporium turcicum to Induce and Degrade a Phytoalexin from Alfalfa. Phytopathology 59, 1493 (1969); Degradation of Alfalfa Phytoalexin by Stemphylium botryosum. Phytopathology 59, 1500 (1969).

    Google Scholar 

  151. Comparative Abilities of Degradation of Alfalfa Phytoalexin by Stemphylium loti and Colletotrium phomoides. Phytopathology 60, 269 (1970).

    Google Scholar 

  152. Higgins, V. J., R. L. Millar, D. G. Smith, and A. G. Mcinnes: Purification and Identification of Alfalfa Phytoalexin. Phytopathology 60, 1295 (1970).

    Google Scholar 

  153. Higgins, V. J., and D. G. Smith: Separation and Identification of Two Pterocarpanoid Phytoalexins Produced by Red Clover Leaves. Phytopathology 62, 235 (1972).

    CAS  Google Scholar 

  154. Higgins, V. J., A. Stoessl, and M. C. Heath: Conversion of Phaseollin to Phaseollin-isoflavan by Stemphylium botryosum. Phytopathology 64, 105 (1974).

    CAS  Google Scholar 

  155. Hijwegen, T.: Autonomous and Induced Pterocarpanoid Formation in the Legu-minosae. Phytochemistry 12, 375 (1973).

    CAS  Google Scholar 

  156. Hiura, M.: Studies on Storage and Rot of Sweet Potato. Rep. Gifu. Agric. Coll. 50, 1 (1943).

    Google Scholar 

  157. Hughes, D. L., and D. T. Coxon: Phytuberin; Revised Structure from the X-Ray Crystal Analysis of Dihydrophytuberin. Chem. Commun. 1974, 822.

    Google Scholar 

  158. Hyodo, H., I. Uritani, and S. Akai: Production of Furanoterpenoids and Other Compounds in Sweet Potato Root Tissue in Response to Infection by Various Isolates of Ceratocystis fimbriata. Phytopathol. Z. 65, 332 (1969).

    CAS  Google Scholar 

  159. Imaseki, H., S. Takei, and I. Uritani: Ipomeamarone Accumulation and Lipid Metabolism in Sweet Potato Infected by the Black Rot Fungus. I. Identification of Sterol and Changes in Lipid Metabolism During Infection Process. Plant Cell Physiol. 5, 119 (1964).

    CAS  Google Scholar 

  160. Imaseki, H., and I. Uritani: Ipomeamarone Accumulation and Lipid Metabolism in Sweet Potato Infected by the Black Rot Fungus. II. Accumulation Mechanism of Ipomeamarone in the Infected Region with Special Regard to Contribution of the Non-infected Tissue. Plant Cell Physiol. 5, 133 (1964).

    CAS  Google Scholar 

  161. Ingham, J. L.: Phytoalexins and Other Natural Products as Factors in Plant Disease Resistance. Bot. Rev. 38, 343 (1972).

    CAS  Google Scholar 

  162. Ingham, J. L.: Isosativan: an Isoflavan Phytoalexin from Trifolium hybridum and Other Trifolium species. Z. Naturforsch. 31c, 331 (1976).

    CAS  Google Scholar 

  163. Ingham, J. L., and R. L. Millar: Sativin. Induced Isoflavan from the Leaves of Medicago sativa. Nature (London) 242, 125 (1973).

    CAS  Google Scholar 

  164. Ishizaka, N., K. Tomiyama, N. Katsui, A. Murai, and T. Masamune: Biological Activities of Rishitin, an Antifungal Compound Isolated from Diseased Potato Tubers, and Its Derivatives. Plant Cell Physiol. 10, 183 (1969).

    CAS  Google Scholar 

  165. Ito, S., Y. Fujise, and A. Mori: Absolute Configuration of Pterocarpinoids. Chem. Commun. 1965, 595.

    Google Scholar 

  166. Jerome, S. M. R., and K. O. Müller: Studies on Phytoalexins. II. Influence of Temperature on Resistance of Phaseolus vulgaris toward Sclerotinia fructicola with Reference to Phytoalexin Output. Austral. J. biol. Sci. 11, 301 (1958).

    Google Scholar 

  167. Johnson, G., D. D. Maag, D. K. Johnson, and R. D. Thomas: The Possible Role of Phytoalexins in the Resistance of Sugarbeet (Beta vulgaris) to Cercospora beticola. Physiol. Plant Pathol. 8, 225 (1976).

    CAS  Google Scholar 

  168. Johnson, C, D. R. Brannon, and J. Kuc: Xanthotoxin: A Phytoalexin of Pastinaca sativa Root. Phytochemistry 12, 2961 (1973).

    CAS  Google Scholar 

  169. Jones, D. R., C. H. Unwin, and E. W. B. Ward: The Significance of Capsidiol Induction in Pepper Fruit During an Incompatible Interaction with Phytophthora infestons. Phytopathology 65, 1286 (1975).

    CAS  Google Scholar 

  170. Kalan, E. B., and S. F. Osman: Isolubimin: a Possible Precursor of Lubimin in Infected Potato Slices. Phytochemistry 15, 775 (1976).

    CAS  Google Scholar 

  171. Kato, N., H. Imaseki, N. Nakashima, and I. Uritani: Structure of a New Sesquiter-penoid, Ipomeamaronol, in Diseased Sweet Potato Root Tissue. Tetrahedron Letters 1971, 843.

    Google Scholar 

  172. Kato, N., H. Imaseki, N. Nakashima, T. Akazawa, and I. Uritani: Isolation of a New Phytoalexin-like Compound, Ipomeamaronol, from Black-Rot Fungus Infected Sweet Potato Root Tissue, and Its Structural Elucidation. Pant Cell Physiol. 14, 597 (1973).

    CAS  Google Scholar 

  173. Katsui, N., A. Matsunaga, K. Imaizumi, T. Masamune, and K. Tomiyama: The Structure and Synthesis of Rishitinol, a New Sesquiterpene Alcohol from Diseased Potato Tubers. VI. Tetrahedron Letters 1971, 83.

    Google Scholar 

  174. Katsui, N., A. Matsunaga, K. Imaizumi, T. Masamune, and K. Tomiyama: The Structure and Synthesis of Rishitinol. A Sesquiterpenes Alcohol from Diseased Potato Tubers. VII. Bull. Chem. Soc. Japan 45, 2871 (1972).

    CAS  Google Scholar 

  175. Katsui, N., A. Matsunaga, and T. Masamune: Studies on the Phytoalexins XI. Structure of Oxylubimin, Antifungal Metabolites From Diseased Potato Tubers. Tetrahedron Letters 1974, 4483.

    Google Scholar 

  176. Katsui, N., A. Murai, M. Takasugi, K. Imaizumi, T. Masamune, and K. Tomiyama: The Structure of Rishitin, a New Antifungal Compound from Diseased Potato Tubers. Chem. Commun. 1968, 43.

    Google Scholar 

  177. Keen, N. T.: Hydroxyphaseollin Production by Soybean Resistant and Susceptible to Phytophthora megasperma var. sojae. Physiol. Plant Pathol. 1, 265 (1971).

    CAS  Google Scholar 

  178. Keen, N. T.: Accumulation of Wyerone in Broadbean and Demethylhomopterocarpin in Jack Bean After Inoculation With Phytophthora megasperma var. sojae A. A. Hildb. Phytopathology 62, 1365 (1972).

    CAS  Google Scholar 

  179. Keen, N. T.: The Isolation of Phytoalexins from Germinating Seeds of Cicer arietinum, Vigna sinensis, Arachis hypogaea, and Other Plants. Phytopathology 65, 91 (1975).

    CAS  Google Scholar 

  180. Keen, N. T.: Specific Elicitors of Plant Phytoalexin Production. Determinants of Race Specificity in Pathogens. Science (Washington) 187, 74 (1975).

    CAS  Google Scholar 

  181. Keen, N. T., and B. W. Kennedy: Hydroxyphaseollin and Related Isoflavanoids in the Hypersensitive Resistance Reaction of Soybeans to Pseudomonas glycinea. Physiol. Plant Pathol. 4, 173 (1974).

    CAS  Google Scholar 

  182. Keen, N. T., and J. D. Paxton: Coordinate Production of Hydroxyphaseollin and the Yellow-fluorescent Compound PAK in Soybeans Resistant to Phytophthora megasperma var. sojae. Phytopathology 65, 635 (1975).

    CAS  Google Scholar 

  183. Keen, N. T., J. J. Sims, D. C. Erwin, E. Rice, and J. E. Partridge: 6a-Hydroxy-phaseollin: an Antifungal Chemical Induced in Soybean Hypocotyls by Phytophthora megasperma var. sojae. Phytopathology 61, 1084 (1971).

    CAS  Google Scholar 

  184. Keen, N. T., A. I. Zaki, and J. J. Sims: Biosynthesis of Hydroxyphaseollin and Related Isoflavanoids in Disease-Resistent Soy-bean Hypocotyls. Phytochemistry 11, 1031 (1972).

    CAS  Google Scholar 

  185. Kim, W. K., I. Oguni, and I. Uritani: Phytopathological Chemistry of Sweet Potato with Black Rot and Injury. Phytoalexin Induction in Sweet Potato Roots by Amino Acids. Agric. Biol. Chem. 38, 2567 (1974).

    CAS  Google Scholar 

  186. Kim, W. K., and I. Uritani: Fungal Extracts That Induce Phytoalexins in Sweet Potato Roots. Plant Cell Physiol. 15, 1093 (1974).

    CAS  Google Scholar 

  187. King, T. J., and L. B. De Silva: Optically Active Gossypol from Thespesia populnea. Tetrahedron Letters 1968, 261.

    Google Scholar 

  188. Klarman, W. L., and J. W. Gerdemann: Induced Susceptibility in Soybean Plants Genetically Resistant to Phytophthora sojae. Phytopathology 53, 863 (1963); Resistance of Soybeans to Three Phytophthora Species Due to the Production of a Phytoalexin. Phytopathology 53, 1317 (1963).

    Google Scholar 

  189. Klarman, W. L., and F. Hammerschlag: Production of the Phytoalexin, Hydroxy-phaseolin, in Soybean Leaves Inoculated With Tobacco Necrosis Virus. Phytopathology 62, 719 (1972).

    CAS  Google Scholar 

  190. Klarman, W. L., and J. B. Stanford: Isolation and Purification of an Antifungal Principle From Infected Soybeans. Life Science 7, 1095 (1968).

    CAS  Google Scholar 

  191. Klinkowski, M.: Phytoalexine: Begriff und methodische Fragen. Ein Beitrag zur Phytoalexin-Theorie von K. O. Müller. Forsch. Fortschr. 40, 321 (1966).

    Google Scholar 

  192. Klinkowski, M.: Die Phytoalexin-Theorie von K. O. MüLLER. Abh. Sächs. Akad. Wiss. Leipzig, Math.-Naturw. Kl. 1966, Kl. 49, No. 3, 1.

    Google Scholar 

  193. Kranz, J.: Pflanzenkrankheiten bedrohen unsere Ernte-Phytopathologie heute. Umschau 75, 691 (1975).

    Google Scholar 

  194. Krzywanski, Z.: Phytoalexins. Wiad. Bot. 14, 109 (1970).

    CAS  Google Scholar 

  195. Kubota, T., and T. Matsuura: Proc. Imp. Acad. (Tokyo) 28, 44, 83, 198 (1952); J. Inst. Polytechn. Osaka City Univ., Ser. C. Chem. 2, 94, 103 (1952); 4, 104, 108, 248 (1953); J. chem. Soc. Japan 74, 101, 197, 248, 666 (1953).

    CAS  Google Scholar 

  196. Kubota, T., T. Matsuura, and N. Ichikawa: Chemical Studies on the Black Rot Disease of Sweet Potato. VIII. The Reaction of Phenyl Magnesium Bromide on Ipo-meamarone. J. chem. Soc. Japan 75, 447 (1954).

    Google Scholar 

  197. Kubota, T., and K. Naya: On the Chemical Constitution of Batatic Acid. A New Furan Keto-acid from the Black Rotted Sweet Potato. Chem. Ind. 1954, 1427.

    Google Scholar 

  198. Kubota, T., H. Yamaguchi, K. Naya, and T. Matsuura: Chemical Studies on the Black Rot Disease of Sweet Potato. I. On Volatile Substances of Black-Rotted Sweet Potato. J. Inst. Polytechn. Osaka City Univ. Ser. C. Chem. 2, 82 (1952).

    CAS  Google Scholar 

  199. Kubota, T., H. Yamaguchi, K. Naya, and T. Matsuura: Chemical Studies on the Black Rot Disease of Sweet Potato. I. On the Volatile Constituents of Black Rotted Sweet Potato. J. chem. Soc. Japan 73, 897 (1952); Chemical Studies on the Black Rot Disease of Sweet Potato. II. Some Properties of Ipomeamarone. J. chem. Soc. Japan 74, 44 (1953).

    CAS  Google Scholar 

  200. Kuc, J.: Phytoalexins. Annu. Rev. Phytopathol. 10, 207 (1972).

    CAS  Google Scholar 

  201. Kurosawa, K., W. D. Ollis, B. T. Redman, J. O. Sutherland, O. R. Gottlieb, and H. M. Alves: The Absolute Configurations of the Animal Metabolite, Equol, Three Naturally Occurring Isoflavans, and One Natural Isoflavan Quinone. Chem. Commun. 1968, 1265.

    Google Scholar 

  202. Lampard, J. F.: Demethylhomopterocarpin: An Antifungal Compound in Canavalia ensiformis and Vigna unguiculata Following Infection. Phytochemistry 13, 291 (1974).

    CAS  Google Scholar 

  203. Leppik, R. A., D. W. Hollomon, and W. Bottomley: Quiesone: An Inhibitor of the Germination of Peronospora tabacina conidia. Phytochemistry 11, 2055 (1972).

    CAS  Google Scholar 

  204. Letcher, R. M.: Structure and Synthesis of the Growth Inhibitor Batatasin I from Dioscorea batatas. Phytochemistry 12, 2789 (1973).

    CAS  Google Scholar 

  205. Letcher, R. M., and L. R. M. Nhamo: Chemical Constituents of the Combretaceae. I. Substituted Phenanthrenes and 9,10-Dihydrophenanthrenes from the Heartwood of Combretum apiculatum. J. chem. Soc. C 1971, 3070.

    Google Scholar 

  206. Letcher, R. M., and L. R. M. Nhamo: A Revised Structure for the Tetra-substituted Phenanthrene from Tamus com-munis. Tetrahedron Letters 1972, 4869.

    Google Scholar 

  207. Letcher, R. M., and L. R. M. Nhamo: Chemical Constituents of the Combretaceae. III. Substituted Phenanthrenes, 9,10-Dihydrophenanthrenes and Bibenzyls from the Heartwood of Combretum psi-dioides. J. chem. Soc. Perkin I 1972, 2941.

    Google Scholar 

  208. Letcher, R. M., L. R. M. Nhamo, and I. T. Gumiro: Chemical Constituents of the Combretaceae. II. Substituted Phenanthrenes and 9,10-Dihydrophenanthrenes and a Substituted Bibenzyl from the Heartwood of Combretum molle. J. chem. Soc. Perkin I 1972, 206.

    Google Scholar 

  209. Letcher, R. M., D. A. Widdowson, B. J. Deverall, and J. W. Mansfield: Identification and Activity of Wyerone Acid as a Phytoalexin in Broad Bean (Vicia faba) After Infection by Botrytis. Phytochemistry 9, 249 (1970).

    CAS  Google Scholar 

  210. Lyne, R. L., L. J. Mulheirn, and D. P. Leworthy: New Pterocarpinoid Phytoalexins of Soybean. Chem. Commun. 1976, 497.

    Google Scholar 

  211. Lyon, G. D.: Occurrence of Rishitin and Phytuberin in Potato Tubers Inoculated with Envinia carotovora var. astroseptica. Physiol. Plant Pathol. 2, 411 (1972).

    CAS  Google Scholar 

  212. Lyon, G. D., B. M. Lund, C. E. Bayliss, and G. M. Wyatt: Resistance of Potato Tubers to Envinia carotovora and Formation of Rishitin and Phytuberin in Infected Tissues. Physiol. Plant Pathol. 6, 43 (1975).

    CAS  Google Scholar 

  213. Lyon, F. M., and R. K. S. Wood: Production of Phaseollin, Coumestrol, and Related Compounds in Bean Leaves Inoculated with Pseudomonas species. Physiol. Plant Pathol. 6, 117 (1975).

    CAS  Google Scholar 

  214. Mccance, D. J., and R. B. Drysdale: Production of Tomatine and Rishitin in Tomato Plants Inoculated with Fusarium oxysporum f. sp. lycopersici. Physiol. Plant Pathol. 7, 221 (1975).

    CAS  Google Scholar 

  215. Mace, M. E., A. A. Bell, and R. D. Stipenovic: Histochemistry and Isolation of Gossypol and Related Terpenoids in Roots of Cotton Seedlings. Phytopathology 64, 1297 (1974).

    Google Scholar 

  216. Mansfield, J. W., and B. J. Deverall: Mode of Action of Pollen in Breaking Resistance of Vicia faba to Botrytis cinerea. Nature (London) 232, 339 (1971).

    CAS  Google Scholar 

  217. Mansfield, J. W., N. J. Dix, and A. M. Perkin: Role of the Phytoalexin Pisatin in Controlling Saprophytic Fungal Growth on Pea Leaves. Trans. Br. Mycol. Soc. 64, 507 (1975).

    Google Scholar 

  218. Mansfield, J. W., A. E. A. Porter, and D. A. Widdowson: Structure of a Fungal Metabolite of the Phytoalexin Wyerone Acid from Vicia faba. J. chem. Soc. Perkin I 1973, 2557.

    Google Scholar 

  219. Mansfield, J. W., and D. A. Widdowson: The Metabolism of Wyerone Acid (a Phytoalexin from Vicia faba L.) by Botrytis fabae and B. cinerea. Physiol. Plant Pathol. 3, 393 (1973).

    CAS  Google Scholar 

  220. Matsuura, T.: Chemische Untersuchungen über Schwarzflecke der Batate. XI. Mitt. Synthese des Ipomeamarons und seine damit zusammenhängenden Verbindungen II. Synthese des Phenylanalogs von Ipomeamaron. J. Inst. Polytechn. Osaka City Univ. Ser. C Chem. 5, 42 (1956).

    Google Scholar 

  221. Matsuura, T., K. Naya, and T. Kubota: Chemical Studies on the Black Rot Disease of Sweet Potato XL Synthesis of Phenylanalôg of Ipomeamarone. J. chem. Soc. Japan 77, 248 (1956).

    Google Scholar 

  222. Metlitskii, L. V.: Plants Protect Themselves. Khim. Zhizn. 1974, 31; Chem. Abstr. 84, 27952 (1976).

    Google Scholar 

  223. Metlitskii, L. V., Yu. T. D’yakov, O. L. Ozeretskovskaya, L. A. Yurganova, L. I. Chalova, and N. I. Vasyukova: Induction of Potato Phytoalexins. Izv. Akad. Nauk SSSR, Ser. Biol., 1971, 399; Chem. Abstr. 75, 45732e (1971).

    Google Scholar 

  224. Metlitskii, L. V., and O. L. Ozeretskovskaya: Phytoncides and Phytoalexins and Their Role in Plant Immunity. Mikol. Fitopatol. 4, 146 (1970); Chem. Abstr. 73, 955311 (1970).

    CAS  Google Scholar 

  225. Metlitskii, L. V., and O. L. Ozeretskovskaya: Phytoalexins and Plant Self-defense. Priroda (Moscow) 1975, 12; Chem. Abstr. 83, 25007 (1975).

    Google Scholar 

  226. Metlitskii, L. V., O. L. Ozeretskovskaya, O. N. Savel’eva, Yu. T. D’yakov, N. J. Vasyukva, M. A. Davydova, L. I. Chalova, and G. I. Chalenko: Isolation of Rishitin and Lubimin in an Infection Drop Placed on the Potato Tuber Surface. Prikl. Biokhim. Mikrobiol. 9, 744 (1973); Chem. Abstr. 80, 26033g (1974).

    CAS  Google Scholar 

  227. Metlitskii, L. V., O. L. Ozeretskovskaya, N. J. Vasyukova, M. A. Davydova, O. N. Savel’eva, and Yu. T. D’yakov: Role of Phytoalexins in the Vertical Resistance of the Potato to Phytophthora infestons. Mikol. Fitopatol. 8, 42 (1974); Chem. Abstr. 81, 132973b (1974).

    CAS  Google Scholar 

  228. Metlitskii, L. V., O. L. Ozeretskovskaya, N. S. Vul’fson, and L. I. Chalova: Chemical Nature of Lubimin, a New Phytoalexin of Potatoes. Dokl. Akad. Nauk SSSR 200, 1470 (1971); Chem. Abstr. 76, 96945e (1972).

    CAS  Google Scholar 

  229. Metlitskii, L. V., O. L. Ozeretskovskaya, N. S. Vul’fson, and L. I. Chalova: Effects of Lubimin on Potato Resistance to Phytophthora infestons and its Chemical Identification. Mikol. Fitopatol. 5, 439 (1971); Chem. Abstr. 76, 56808 (1972).

    CAS  Google Scholar 

  230. Metlitskii, L. V., O. L. Ozeretskovskaya, N. S. Vul’fson, N. I. Vasyukova, L. I. Chalova, and M. A. Davydova: Biological Activity and Chemical Characteristics of Lubimine, a New Phytoalexin of Potatoes. Immunitet Pokoi Rast. 1972, 3, edit, by METLITSKII, L. V. “Nauka”, Moskau; Chem. Abstr. 78, 156736r (1973).

    Google Scholar 

  231. Mori, K.: Synthesis of dl-3-Isobutyroxy-β-ionone and dl-Dehydrovomifoliol. Agr. Biol. Chem. 37, 2899 (1973).

    CAS  Google Scholar 

  232. Müller, K. O.: Einige einfache Versuche zum Nachweis von Phytoalexinen. Phyto-pathol. Z. 27, 237 (1956); Relationship between Phytoalexin Output and the Number of Infections Involved. Nature 182, 167 (1958); The Phytoalexin Concept and its Methodological Significance. Recent Advan. Bot. 1, 396 (1959); Die Phytoalexine, in Sicht einer allgemeinen Immunbiologie. Zentralbl. Bakteriol. Hyg. 2. Abt. 123, 259 (1969).

    Google Scholar 

  233. Müller, K. O.: Studies on Phytoalexins I. The Formation and the Immunological Significance of Phytoalexin Produced by Phaseolus vulgaris in Response to Infection with Sclerotinia fructicola and Phytophthora infestons. Austral. J. Biol. Sci. 11, 275 (1958).

    Google Scholar 

  234. Müller, K. O., and H. Borger: Experimentelle Untersuchungen über die Phytoph-thora-Resistenz der Kartoffel. Arb. Biol. Anst. (Reichsanst.) Berlin 23, 189 (1941).

    Google Scholar 

  235. Müller, P., J. Seres, K. Steiner, S. E. Helali, und E. Hardegger: Welkstoffe und Antibiotika. Synthese von Dehydroorchinolmethyläther und Dehydroorchinol. Helv. Chim. Acta 57, 790 (1974).

    Google Scholar 

  236. Mukhamedova, R. A., and YA. KH. Turakulov: Phytoalexin Activity of Cotton Plants and their Wilt Resistance. Uzb. Biol. Zh. 18, 3 (1974); Chem. Abstr. 84, 102285 y (1976).

    CAS  Google Scholar 

  237. Mukhamedova, R. A., N. V. Lyubimova, M. KH. Avazkodzhayev, and L. U. Metlitskii: Phytoalexin Activity of Cotton Plants as a Wilt Resistance Factor. Mikhol. Fitopatol. 9, 505 (1975); Chem. Abstr. 84, 147871 (1976).

    CAS  Google Scholar 

  238. Munn, C. B., and R. B. Drysdale: Kievitone Production and Phenylalanine Ammonia-lyase Activity in Cowpea. Phytochemistry 14, 1303 (1975).

    CAS  Google Scholar 

  239. Murai, A., K. Nishizakura, N. Katsui, and T. Masamune: The Synthesis of Rishitin. Tetrahedron Letters (London) 1975, 4399.

    Google Scholar 

  240. Nonaka, F., S. Isayama, and H. Furukawa: On the Phytoalexin Produced by the Results of the Interaction Between Pods and Phytopathogens. Agric. Bull. Saga Univ. 22, 51 (1966).

    Google Scholar 

  241. Nonaka, F., and M. Matsuzaki: Production of Hydroxyphaseollin in Soybean Leaves Infected with the Leaf Blight Bacterium Xanthomonas phaseoli var. sojae and its Antifungal Action. Saga Daigaku Nogaku Iho 40, 1 (1976); Chem. Abstr. 85, 17300 (1976).

    CAS  Google Scholar 

  242. Oba, K., H. Shibata, and I. Uritani: The Mechanism Supplying Acetyl-CoA for Terpene Biosynthesis in Sweet Potato with Black Rot: Incorporation of Acetate-2-14C, Pymvate-3-14C and Citrate-2,4-14C into Ipomeamarone. Plant Cell Physiol. 11, 507 (1970).

    CAS  Google Scholar 

  243. Oguni, I., K. Oshima, H. Imaseki, and I. Uritani: Biochemical Studies on the Terpene Metabolism in Sweet Potato Root Tissue with Black Rot. Effect of C10-and C15-Terpenols on Acetate-2-14C Incorporation into Ipomeamarone. Agr. Biol. Chem. 33, 50(1969).

    Google Scholar 

  244. Oguni, I., and I. Uritani: The Incorporation of Farnesol-2-14C into Ipomeamarone. Agr. Biol. Chem. 34, 156 (1970).

    CAS  Google Scholar 

  245. Oguni, I., and I. Uritani: Utilization of Ethanol-2-14C for the Biosynthesis of Ipomeamarone by Sweet Potato Root Tissue Infected with Ceratocystis fimbriata. Agr. Biol. Chem. 35, 357 (1971).

    CAS  Google Scholar 

  246. Oguni, I., and I. Uritani: Participation of Farnesol in the Biosynthesis of Ipomeamarone. Plant Cell Physiol. 12, 507 (1971).

    CAS  Google Scholar 

  247. Oguni, L, and I. Uritani: Isolation of Dehydro-ipomeamarone, a New Sesqui-Terpenoid from the Black-Rot Fungus Infected Sweet Potato Root Tissue and its Relation to the Biosynthesis of Ipomeamarone. Agr. Biol. Chem. 37, 2443 (1973).

    CAS  Google Scholar 

  248. Oguni, I., and I. Uritani: Effect of (—)-Hydroxycitrate on Ipomeamarone Biosynthesis from Pyruvate in Sweet Potato with Black Rot. Plant Cell Physiol. 15, 179 (1974).

    CAS  Google Scholar 

  249. Oguni, I., and I. Uritani: Dehydroipomeamarone as an Intermediate on the Biosynthesis of Ipomeamarone, a Phytoalexin from Sweet Potato Root Infected with Ceratocystis fimbriata. Plant Physiol. 53, 649 (1974).

    CAS  Google Scholar 

  250. Oguni, I., and I. Uritani: Dehydroipomeamarone from Infected Ipomoea batatas Root Tissue. Phyto-chemistry 13, 521 (1974).

    CAS  Google Scholar 

  251. Ohno, T.: The Bitter Substance produced in Black Rotten Sweet Potato. II. On the Constitution of Ipomeamarone. Part I. Bull. Chem. Soc. Japan 25, 222 (1952).

    CAS  Google Scholar 

  252. Oku, H., E. Ouchi, T. Shiraishi, and T. Buba: Pisatin Production in Powdery Mildewed Pea Seedlings. Phytopathology 65, 1263 (1975).

    CAS  Google Scholar 

  253. Oku, H., T. Shiraishi, and S. Ouchi: Role of Phytoalexin as the Inhibitor of Infection Establishment in Plant Disease. Naturwissenschaften 62, 486 (1975).

    CAS  Google Scholar 

  254. Oshimaoba, K., I. Sugiura, and I. Uritani: The Incorporation of LEUCINE-U-14C into Ipomeamarone. Agric. Biol. Chem. 33, 586 (1969).

    Google Scholar 

  255. Oshima, K., and I. Uritani: Participation of Mevalonate in the Biosynthetic Pathway of Ipomeamarone. Agric. Biol. Chem. 32, 1146 (1968).

    CAS  Google Scholar 

  256. Ozeretskovskaya, O. L., N. I. Vasyukova, and L. V. Metlitskii: Potato Phytoalexins. Dokl. Acad. Nauk SpSSR 189, 1146 (1969); Chem. Abstr. 72, 107943y (1970).

    CAS  Google Scholar 

  257. Patil, S. S., and S. S. Gnanamanickam: Suppression of Bacterially Induced Hypersensitive Reaction and Phytoalexin Accumulation in Bean by Phaseotoxin. Nature 259, 486 (1976).

    CAS  Google Scholar 

  258. Paxton, J. D., and D. W. Chamberlain: Phytoalexin Production and Disease Resistance in Soybean as Affected by Age. Phytopathology 59, 775 (1969).

    CAS  Google Scholar 

  259. Paxton, J. D., J. Goodchild, and I. A. M. Cruickshank: Phaseollin Production by Live Bean Endocarp. Physiol. Plant Pathol. 4, 167 (1974).

    Google Scholar 

  260. Perrin, D. R.: The Structure of Phaseolin. Tetrahedron Letters 1964, 29.

    Google Scholar 

  261. Perrin, D. R.: Physicochemical Properties of Phaseollin. Phytopathol. Z. 70, 227 (1971).

    CAS  Google Scholar 

  262. Perrin, D. R., D. R. Biggs, and J. A. M. Cruickshank: Phytoalexins XV. Phaseollidin, a Phytoalexin from Phaseolus vulgaris. Isolation, Physicochemical Properties, and Antifungal Activity. Aust. J. Chem. 27, 1607 (1974).

    CAS  Google Scholar 

  263. Perrin, D. R., and W. Bottomley: Pisatin: An Antifungal Substance from Pisum sativum L. Nature 191, 76 (1961).

    CAS  Google Scholar 

  264. Perrin, D. R., and W. Bottomley: Studies in Phytoalexins V. The Structure of Pisatin from Pisum sativum L. J. Amer. Chem. Soc. 84, 1919 (1962).

    CAS  Google Scholar 

  265. Perrin, D. R., and I. A. M. Cruickshank: Studies on Phytoalexins. VII. Chemical Stimulation of Pisatin Formation in Pisum sativum. Austral. J. Biol. Sci. 18, 803 (196

    CAS  Google Scholar 

  266. Perrin, D. R., and I. A. M. Cruickshank: The Antifungal Activity of Pterocarpans towards Monilinia fructicola. Phyto-chemistry 8, 971 (1969).

    CAS  Google Scholar 

  267. Perrin, D. D., and D. R. Perrin: The N.m.r. Spectrum of Pisatin. J. Amer. Chem. Soc. 84, 1922 (1962).

    CAS  Google Scholar 

  268. Perrin, D. R., C. P. Whittle, and T. J. Batterham: The Structure of Phaseollidin. Tetrahedron Letters 1972, 1673.

    Google Scholar 

  269. Pfleger, F. L., and G. E. Harman: Inability of Storage Fungi to Invade Pea Embryos: Evidence Against Phytoalexin Involvement. Phytopathology 65, 642 (1975).

    CAS  Google Scholar 

  270. Pierre, R. E.: Phytoalexin Induction in Beans Resistant or Susceptible to Fusarium and Thielaviopsis. Phytopathology 61, 322 (1971).

    CAS  Google Scholar 

  271. Pierre, R. E., and D. F. Batemann: Induction and Distribution of Phytoalexins in Rhizoctonia-infected. Bean Hypocotyls. Phytopathology 57, 1154 (1967).

    CAS  Google Scholar 

  272. Preston, N. W.: 2′-O-Methylphaseollidinisoflavan from Infected Tissue of Vigna unguiculata. Phytochemistry 14, 1131 (1975).

    CAS  Google Scholar 

  273. Preston, N. W., K. Chamberlain, and R. A. Skipp: A 2-Arylbenzofuran Phytoalexin from Cowpea (Vigna unguiculata). Phytochemistry 14, 1843 (1975).

    CAS  Google Scholar 

  274. Pryce, R. J.: Lunularic Acid, a Common Endogenous Growth Inhibitor of Liverworts. Planta (Berlin) 97, 354 (1971).

    CAS  Google Scholar 

  275. Pryce, R. J.: The Occurrence and Metabolism of Lunularic Acid, an Endogenous Stilbene Growth Inhibitor in Liverworts. Phytochemistry 11, 872 (1972); Metabolism of Lunularic Acid to a New Plant Stilbene by Lunularia cruciata. Phytochemistry 11, 1355 (1972); The Occurrence of Lunularic and Abscisic Acid in Plants. Phytochemistry 11, 1759 (1972).

    Google Scholar 

  276. Pryce, R. J., and L. Linton: Lunularic Acid Decarboxylase from the Liverwort Conocephalum conicum. Phytochemistry 13, 2497 (1974).

    CAS  Google Scholar 

  277. Pueppke, S. G., and H. D. VAN Etten: Identification of Three New Pterocarpans (6a,11a-dihydro-6H-benzofuro-[3,2-c] [1] benzopyrans) from Pisum sativum Infected with Fusarium solanif. sp. pisi. J. Chem. Soc. Perkin I 1975, 946.

    Google Scholar 

  278. Purkayastha, R. P.: Phytoalexins. Plant Antigens and Disease Resistance. Sci. Cult. 39, 528 (1973).

    CAS  Google Scholar 

  279. Purkayastha, R. P., and B. J. Deverall: The Detection of Antifungal Substances Before and After Infection of Beans (Vicia faba L.) by Botrytis spp. Ann. Appl. Biol. 56, 269 (1965); The Growth of Botrytis fabae and B. einerea Into Leaves of Bean (Vicia faba L.). Ann. Appl. Biol. 56, 139 (1965).

    CAS  Google Scholar 

  280. Rahe, J. E.: Occurrence and Levels of the Phytoalexin Phaseollin in Relation to Delimitation at Sites of Infection of Phaseolus vulgaris by Colletotrichum lendemuthianum. Can. J. Bot. 51, 2423(1973).

    CAS  Google Scholar 

  281. Rajaraman, K., and S. Rangaswami: Structures of Two New 9,10-Dihydrophenan-threnes from Dioscorea prazeri. Indian J. Chem. 13, 1137 (1975).

    CAS  Google Scholar 

  282. Rathmell, W. G.: Phenolic Compounds and Phenylalanine Ammonia Lyase Activity in Relation to Phytoalexin Biosynthesis in Infected Hypocotyls of Phaseolus vulgaris. Physiol. Plant Pathol. 3, 259 (1973).

    CAS  Google Scholar 

  283. Rathmell, W. G., and D. S. Bendall: Phenolic Compounds in Relation to Phytoalexin Biosynthesis in Hypocotyls of Phaseolus vulgaris. Physiol. Plant Pathol. 1, 351 (1971).

    CAS  Google Scholar 

  284. Reisch, J., M. Bathory, K. Szendrei, I. Novak, and E. Minher: Dioscoreaceae. Weitere Phenanthrene aus dem Rhizom von Tamus communis. Phytochemistry 12, 228 (1973).

    CAS  Google Scholar 

  285. Saito, M., N. Kondo, H. Yamaguchi, and T. Hashimoto: Plant Growth-Regulating Activities of Batatasin III Analogs. Plant Cell Physiol. 17, 411 (1976).

    CAS  Google Scholar 

  286. Sandykov, A. S., L. V. Melitskii, A. K. Karimdzhanov, A. I. Ismailov, R. A. Mukhamedova, M. KH. Avazkhodzhaev, and F. G. Kamaev: Isohemigossypol as a Phytoalexin of a Cotton Plant. Dokl. Akad. Nauk SSSR 218, 1472 (1974); Chem. Abstr. 82, 82996j (1975).

    CAS  Google Scholar 

  287. Sato, N., K. Kitazawa, and K. Tomiyama: The Role of Rishitin in Localizing the Invading Hyphae of Phytophthora infestons in Infection Sites at the Cut Surfaces of Potato Tubers. Physiol. Plant Pathol. 1, 289 (1971).

    CAS  Google Scholar 

  288. Sato, N., and K. Tomiyama: Localized Accumulation of Rishitin in the Potato-tuber Tissue Infected by an Incompatible Race of Phythophthora infestans. Ann. Phytopathol. Soc. Japan 35, 202 (1969).

    CAS  Google Scholar 

  289. Sato, N., K. Tomiyama, N. Katsui, and T. Masamune: Isolation of Rishitin from Tomato Plants. Ann. Phytopathol. Soc. Japan 34, 344 (1968).

    CAS  Google Scholar 

  290. Sato, N., K. Tomiyama, N. Katsui, and T. Masamune: Isolation of Rishitin from Tubers in Interspecific Potato Varieties Containing Different Late-blight Resistance Genes. Ann. Phytopathol. Soc. Japan 34, 140 (1968).

    Google Scholar 

  291. Supchönbeck, F.: Untersuchungen über Blüteninfektionen. V. Untersuchungen an Tulpen. Phytopathol. Z. 59, 205 (1967).

    Google Scholar 

  292. Supchönbeck, F., and C. Supchröder: Role of Antimicrobial Substances (Tuliposides) in Tulips Att cked by Botrytis spp. Physiol. Plant Pathol. 2, 91 (1972).

    Google Scholar 

  293. Schroeder, C.: Influence of γ-Hydroxylic Acids on the Hot-parasite Ratio of Tulips and Botrytis species. Phytopathol. Z. 74, 175 (1972).

    CAS  Google Scholar 

  294. Supchütte, H. R.: Flavonoid Biosynthesis and their Regulation. Fortschr. Bot. 36, 108 (1974).

    Google Scholar 

  295. Schwochau, M. E., and L. A. Hadwiger: Stimulation of Pisatin Production in Pisum sativum by Actinomycin D and Other Compounds. Arch. Biochem. Biophysics 126, 731 (1968).

    CAS  Google Scholar 

  296. Schwochau, M. E., and L. A. Hadwiger: Regulation of Gene Expression by Actinomycin D and Other Compounds Which Change the Conformation of DNA. Arch. Biochem. Biophysics 134, 34 (1969).

    CAS  Google Scholar 

  297. Shih, M., and J. Kuc: Incorporation of 14C from Acetate and Mevalonate into Rishitin and Steroid Glycoalkaloids by Potato Tuber Slices Inoculated with Phytophthora infestans. Phytopathology 63, 826 (1973).

    CAS  Google Scholar 

  298. Shiraishi, T., H. Oku, M. Isono, and S. Ouchi: The Injurious Effect of Pisatin on the Plasma membrane of Pea. Plant Cell Physiol. 16, 939 (1975).

    CAS  Google Scholar 

  299. Sims, J. J., N. T. Keen, and V. K. Honwad: Hydroxyphaseollin, an Induced Anti-fungal Compound from Soybeans. Phytochemistry 11, 827 (1972).

    CAS  Google Scholar 

  300. Sitton, D., and C. A. West: Casbene: an Antifungal Diterpene Produced in Cell-free Extracts of Ricinus communis Seedlings. Phytochemistry 14, 1921 (1975).

    CAS  Google Scholar 

  301. Slob, A., B. Jekel, B. DE Jong, and E. Schlatmann: On the Occurrence of Tuliposides in the Liliiflorae. Phytochemistry 14, 1997 (1975).

    CAS  Google Scholar 

  302. Smith, D. G., A. G. Mcinnes, V. J. Higgins, and R. L. Millar: Nature of the Phytoalexin Produced by Alfalfa in Response to Fungal Infection. Physiol. Plant Pathol. 1, 41 (1971).

    CAS  Google Scholar 

  303. Smith, D. A., H. D. Van Etten, and D. F. Bateman: Isolation of Substance II, an Antifungal Compound from Rhizoctonia solani-Infected Bean Tissue. Phytopathology 61, 912(1971).

    Google Scholar 

  304. Smith, D. A., H. D. Van Etten, and D. F. Bateman: Kievitone. Principal Antifungal Component of “Substance II” Isolated from Rhizoctonia Infected Bean Tissues. Physiol. Plant Pathol. 3, 179 (1973).

    CAS  Google Scholar 

  305. Smith, D. A., H. D. Van Etten, and D. F. Bateman: Accumulation of Phytoalexins in Phaseolus vulgaris Hypocotyls Following Infection by Rhizoctonia solani. Physiol. Plant Pathol. 5, 51 (1975).

    CAS  Google Scholar 

  306. Smith, D. A., H. D. Van Etten, J. W. Serum, T. M. Jones, D. F. Bateman, T. H. Williams, and D. L. Coffen: Confirmation of the Structure of Kievitone, an Anti-fungal Isoflavanone Isolated from Rhizoctonia-lnfected Bean Tissues. Physiol. Plant Pathol. 3, 293 (1973).

    Google Scholar 

  307. Steiner, K., C. Egli, N. Rigassi, S. E. Helali, and E. Hardegger: Welkstoffe und Antibiotika. Zur Synthese des Orchinols. Helv. Chim. Acta 57, 1137 (1974).

    CAS  Google Scholar 

  308. Steiner, P. W., and R. L. Millar: Degradation of Medicarpin and Sativan by Stemphyllum botryosum. Phytopathology 64, 586 (1974).

    Google Scholar 

  309. Stholasuta, P., J. A. Bailey, V. Severin, and B. J. Deverall: Effect of Bacterial Inoculation of Bean and Pea Leaves on the Accumulation of Phaseollin and Pisatin. Physiol. Plant Pathol. 1, 177(1971).

    CAS  Google Scholar 

  310. Stipanovic, R. D., A. A. Bell, and C. R. Howell: Naphthofuran Precursors of Sesquiterpenoid Aldehydes in Diseased Gossypium. Phytochemistry 14, 1809 (1975).

    CAS  Google Scholar 

  311. Stipanovic, R. D., A. A. Bell, M. E. Mace, and C. R. Howell: Antimicrobial Ter-penoids of Gossypium: 6-Methoxygossypol and 6,6′-Dimethoxygossypol. Phytochemistry 14, 1077 (1975).

    CAS  Google Scholar 

  312. Stoessl, A.: Antifungal Compounds Produced by Higher Plants. Rec. Adv. Phytochem. 3, 143 (1972).

    Google Scholar 

  313. Stoessl, A.: Inermin Associated with Pisatin in Peas Inoculated With the Fungus Monilinia fructicola. Can. J. Biochem. 50, 107 (1972).

    CAS  Google Scholar 

  314. Stoessl, A., G. L. Rock, and M. H. Fisch: An Efficient Synthesis of Orchinol and Other Orchid Phenanthrenes. Chem. Ind. 1974, 703.

    Google Scholar 

  315. Stoessl, A., J. B. Stothers, and E. W. B. Ward: Lubimin: A Phytoalexin of Several Solanaceae. Structure Revision and Biogenetic Relationship. Chem. Commun. 1974, 709.

    Google Scholar 

  316. Stoessl, A., J. B. Stothers, and E. W. B. Ward: A 2,3-Dihydroxygermacrene and Other Stress Metabolites of Datura stramonium. Chem. Commun. 1975, 431.

    Google Scholar 

  317. Stoessl, A., J. B. Stothers, and E. W. B. Ward: The Structures of Some Stress Metabolites from Solarium melongena. Can. J. Chem. 53, 3351 (1975).

    CAS  Google Scholar 

  318. Stoessl, A., J. B. Stothers, and E. W. B. Ward: Sesquiterpenoid Stress Compounds of the Solanaceae. Phytochemistry 15, 855 (1976).

    CAS  Google Scholar 

  319. Stoessl, A., E. W. B. Ward, and J. B. Stothers: Incorporation of Doubly Labelled Sodium Acetate-13C2 into Phytuberin and Other Sesquiterpenes in Potatoes; Experimental Confirmation of Postulated C-C-Cleavages. Tetrahedron Letters 1976, 3271.

    Google Scholar 

  320. Stoessl, A., C. H. Unwin, and E. W. B. Ward: Postinfectional Inhibitors from Plants. I. Capsidiol, an Antifungal Compound from Capsicum frutescens. Phyto-pathol. Z. 74, 141 (1972).

    CAS  Google Scholar 

  321. Stoessl, A., C. H. Unwin, and E. W. B. Ward: Postinfectional Inhibitors From Plants: Fungal Oxidation of Capsidiol in Pepper Fruit. Phytopathology 63,1225 (1973).

    CAS  Google Scholar 

  322. Suzuki, H., K. Oba, and I. Uritani: The Occurrence and Some Properties of 3-Hydroxy-3-methylglutaryl coenzyme A reductase in Sweet Potato Roots Infected by Ceratocystisfimbriata. Physiol. Plant Pathol. 7, 265 (1975).

    CAS  Google Scholar 

  323. Taira, T., and Y. Fukagawa: On the Bitter Substance Separated from Alcohol Destillation of Sweet Potato Mash. J. Agric. Chem. Soc. Japan 32, 513 (1958).

    CAS  Google Scholar 

  324. Thomas, C. A., and E. H. Allen: An Antifungal Polyacetylene Compound from Phytophthora-infected Safflower Hypocotyls. Phytopathology 59, 1053 (1969).

    Google Scholar 

  325. Thomas, C. A., and E. H. Allen: An Antifungal Polyacetylene Compound from Phytophthora-lnfected Safflower. Phytopathology 60, 261 (1970).

    CAS  Google Scholar 

  326. Concentration of Safynol in Phytophthora-lnfected Safflower. Phytopathology 60, 1153(1970).

    Google Scholar 

  327. Tjamos, E. C, and I. M. Smith: Role of Phytoalexins in the Resistance of Tomato to Verticillium wilt. Physiol. Plant Pathol. 4, 249 (1974).

    CAS  Google Scholar 

  328. Tomiyama, K., T. Sakuma, N. Ishizaka, N. Sato, N. Katsui, M. Takasugi, and T. Masamune: A New Antifungal Substance Isolated From Resistant Potato Tuber Tissue Infected by Pathogens. Phytopathology 58, 115 (1968).

    CAS  Google Scholar 

  329. Tschesche, R., F. J. Kämmerer, and G. Wulff: Über die Struktur der antibiotisch aktiven Substanz der Tulpe (Tulipa gesneriana L.). Chem. Ber. 102, 2057 (1969).

    CAS  Google Scholar 

  330. Tschesche, R., F. J. Kämmerer, G. Wulff, und T. Schönbeck: Über die antibiotisch wirksamen Substanzen der Tulpe (Tulipa gesneriana). Tetrahedron Letters 1968, 701.

    Google Scholar 

  331. Uehara, K.: On the Phytoalexin Production of the Soybean Pod in Reaction to Fusarium spp., the Causal Fungus of Pod Blight. I. Ann. Phytopathol. Soc. Japan 23, 225 (1958).

    Google Scholar 

  332. Uehara, K.: On Some Propertied of Phytoalexins Produced as a Result of the Interaction Between Pea (Pisum sativum L.) and Ascochyta pisi Lib. I. Ann. Phytopathol. Soc. Japan 23, 230 (1958).

    Google Scholar 

  333. Uehara, K.: On the Phytoalexin Production of the Soybean Pod in Reaction to Fusarium spp., the Causal Fungus of Pod Blight. II. Ann. Phytopathol. Soc. Japan 24, 224 (1959).

    Google Scholar 

  334. Uehara, K.: On Some Properties of Phytoalexin Produced as a Result of the Interaction Between Pea (Pisum sativum L.) and Ascochyta pisi Lib. II. Effect of Duration of Mounting the Spore Suspension on the Pea Pod and Pre-infectional Treatment of Pea Pods with Ether or Heat Upon Phytoalexin Production. Ann. Phytopathol. Soc. Japan 25, 85 (1960).

    Google Scholar 

  335. Urech, J., B. Fechtig, J. Nüesch, und E. Vischer: Hircinol, eine antifungisch wirksame Substanz aus Knollen von Loroglossum hircinum (L.) Rich. Helv. Chim. Acta 46, 2758 (1963).

    CAS  Google Scholar 

  336. Uritani, I., and T. Akazawa: Antibiotic Effect on Ceratostomella fimbriata of Ipomeamarone, an Abnormal Metabolite in Black Rot of Sweet Potato. Science 121, 216(1955).

    CAS  Google Scholar 

  337. Uritani, L, and K. Oshima: Effects of Ipomeamarone on Respiratory Enzyme System in Mitochondria. Agric. Biol. Chem. 29, 641 (1965).

    CAS  Google Scholar 

  338. Uritani, L, T. Saito, H. Honda, and W. K. Kim: Induction of Furano-terpenoids in Sweet Potato Roots by the Larval Components of the Sweet Potato Weevils. Agric. Biol. Chem. 39, 1857 (1975).

    CAS  Google Scholar 

  339. Uritani, I., M. Uritani, and H. Yamada: Similar Metabolic Alterations Induced in Sweet Potato by Poisonous Chemicals and by Ceratostomella fimbriata. Phytopathology 50, 30 (1960).

    CAS  Google Scholar 

  340. Valio, I. F. M., and W. W. Schwabe: Growth and Dormancy in Lunularia cruciata (L.) Dum. VII. The Isolation and Bioassay of Lunularic Acid. J. Exp. Bot. 21,138 (1970).

    CAS  Google Scholar 

  341. Van Den Ende, G.: Neue Untersuchungen über die Phytoalexin-Bildung. Tag. Ber. Dtsch. Akad. Landw. Wiss. Berlin 74, 283 (1965).

    Google Scholar 

  342. VAN Den Ende, G.: Phytoalexin-Bildung bei der Wechselwirkung zwischen Sclerotinia fructicola und Wirtsgeweben. Phytopathol. Z. 64, 68 (1969).

    Google Scholar 

  343. VAN Den Ende, G., und K. O. Müller: Zur Kinetik der Phytoalexinbildung. Naturwissenschaften 51, 317 (1964).

    Google Scholar 

  344. VAN Etten, H. D.: Antifungal and Hemolytic Activities of Four Pterocarpan Phytoalexins. Phytopathology 62, 795 (1972).

    Google Scholar 

  345. VAN Etten, H. D.: Identification of a Second Antifungal Isoflavan From Diseased Phaseolus vulgaris Tissue. Phytochemistry 12, 1791 (1973).

    Google Scholar 

  346. VAN Etten, H. D.: Differential Sensitivity of Fungi to Pisatin and to Phaseollin. Phytopathology 63, 1477(1973).

    Google Scholar 

  347. VAN Etten, H. D.: Antifungal Activity of Pterocarpans and other Selected Isoflavo-noids. Phytochemistry 15, 655 (1976).

    Google Scholar 

  348. VAN Etten, H. D., and D. F. Bateman: Isolation of Phaseollin from Rhizoctonia-Infected Bean Tissue. Phytopathology 60, 385 (1970).

    Google Scholar 

  349. Studies on the Mode of Action of the Phytoalexin Phaseollin. Phytopathology 61, 1363(1971).

    Google Scholar 

  350. Van Etten, H. D., S. G. Pueppke, and T. C. Kelsey: 3, 6a-Dihydroxy-8,9-methylene-dioxypterocarpan as a Metabolite of Pisatin Produced by Fusarium solani f. sp. Pisi. Phytochemistry 14, 1103 (1975).

    Google Scholar 

  351. VAN Etten, H. D., and D. A. Smith: Accumulation of Antifungal Isoflavonoids and la-Hydroxyphaseollone, a Phaseollin Metabolite in Bean Tissue Infected With Fusarium solani f. specialis phaseoli. Physiol. Plant Pathol. 5, 225 (1975).

    Google Scholar 

  352. Varns, J. L., W. W. Currier, and J. Kuc: Specificity of Rishitin and Phytuberin Accumulation by Potato. Phytopathology 61, 968 (1971).

    CAS  Google Scholar 

  353. Varns, J. L., and J. Kuc: Suppression of Rishitin and Phytuberin Accumulation and Hypersensitive Response in Potato by Compatible Races of Phytophthora infestons. Phytopathology 61, 178 (1971).

    CAS  Google Scholar 

  354. Varns, J. L., J. Kuc, and E. B. Williams: Terpenoid Accumulation as a Biochemical Response of the Potato Tuber to Phytophthora infestons. Phytopathology 61, 174 (1971).

    CAS  Google Scholar 

  355. Vasyukova, N. I., O. L. Ozeretskovskaya, and L. V. Metlitskii: Phytoalexins of Potatoes. Prikl. Biokhim. Microbiol. 6, 431 (1970); Chem. Abstr. 73, 127885 (1970).

    CAS  Google Scholar 

  356. Veech, J. A., R. D. Stipanovic, and A. A. Bell: Peroxidative Conversion of Hemigossy-pol to Gossypol. A Revised Structure for Isohemigossypol. Chem. Commun. 1976, 144.

    Google Scholar 

  357. Wain, R. L., D. M. Spencer, and C. H. Fawcett: Antifungal Compounds in Seedlings of Vicia faba. Chem. Ind. 1961, 343.

    Google Scholar 

  358. Ward, E. W. B.: Capsidiol Production in Pepper Leaves in Incompatible Interactions with Fungi. Phytopathology 66, 175 (1976).

    CAS  Google Scholar 

  359. Ward, E. W. B., and A. Stoessl: Postinfectional Inhibitors from Plants. III. Detoxification of Capsidiol, an Antifungal Compound from Peppers. Phytopathology 62, 1186(1972).

    CAS  Google Scholar 

  360. Ward, E. W. B., C. H. Unwin, J. Hill, and A. Stoessl: Sesquiterpenoid Phytoalexins from Fruits of Eggplants. Phytopathology 65, 859 (1975).

    CAS  Google Scholar 

  361. Ward, E. W. B., C. H. Unwin, G. L. Rock, and A. Stoessl: Postinfectional Inhibitors from Plants. Sesquiterpenoid Phytoalexins from Fruit Capsules of Datura stramonium. Can. J. Bot. 54, 25 (1976).

    CAS  Google Scholar 

  362. Ward, E. W. B., C. H. Unwin, and A. Stoessl: Postinfectional Inhibitors from Plants. VII. Tolerance of Capsidiol by Fungal Pathogens of Pepper Fruit. Can. J. Bot. 51, 2327 (1973).

    CAS  Google Scholar 

  363. Ward, E. W. B., C. H. Unwin, and A. Stoessl: Postinfectional Inhibitors from Plants. VI. Capsidiol Production in Pepper Fruit Infected With Bacteria. Phytopathology 63, 1537 (1973).

    CAS  Google Scholar 

  364. Ward, E. W. B., C. H. Unwin, and A. Stoessl: Postinfectional Inhibitors from Plants. XIII. Fungitoxicity of the Phytoalexin, Capsidiol and Related Sesquiterpenes. Can. J. Bot. 52, 2481 (1974).

    CAS  Google Scholar 

  365. Postinfectional Inhibitors from Plants. XV. Antifungal Activity of the Phytoalexins Orchinol and Related Phenanthrenes and Stilbenes. Can. J. Bot. 53, 964 (1975).

    Google Scholar 

  366. Postinfectional Inhibitors from Plants. Loroglossol: An Orchid Phytoalexin. Phytopathology 65, 632 (1975).

    Google Scholar 

  367. Postinfectional Inhibitors from Plants. Experimental Control of Late Blight of Tomatoes with Capsidiol, the Phytoalexin from Peppers. Phytopathology 65, 168 (1975).

    Google Scholar 

  368. Watanabe, H., and S. Nishiyama: Studies on the Black-Rotten Sweet Potato. Part 3. Chemical Properties of Ipomeamarone. J. Agric. Chem. Soc. Japan 26, 200 (1952).

    CAS  Google Scholar 

  369. Wilson, B. J., D. T. C. Yang, and M. R. Boyd: Toxicity of Mould-Damaged Sweet Potatoes (Ipomoea batatas). Nature (London) 227, 521 (1970).

    CAS  Google Scholar 

  370. Witelshove, A. DE: Breakdown of Pisatin by Some Fungi Pathogenic to Pisum sativum. Netherlands J. Plant Pathol. 74, 44 (1968).

    Google Scholar 

  371. Witelshove, A. DE: The Role of Pisatin in the Resistance of Pea Plants — Some Further Experiments on the Breakdown of Pisatin. Netherlands J. Plant Pathol. 75, 164 (1969).

    Google Scholar 

  372. Witelshove, A. DE: Some Aspects of the Degradation of Pisatin by Fungi, Pathogenic to Pisum sativum L. Acta bot. neerl. 19, 113 (1970).

    Google Scholar 

  373. Witelshove, A. DE, and A. Fuchs: The Influence of the Carbohydrate Source on Pisatin Breakdown by Fungi Pathogenic to Pea (Pisum sativum). Physiol. Plant Pathol. 1, 17(1971).

    Google Scholar 

  374. Wong, E.: Structural and Biogenetic Relationships of Isoflavonoids. Fortschr. Chem. Org. Naturst. 28, 1 (1970).

    CAS  Google Scholar 

  375. Wood, G., and A. Huang: Detection and Quantitative Determination of Ipomeamarone in Damaged Sweet Potatoes (Ipomoea batatas). J. Agr. Food Chem. 23, 239 (1975).

    CAS  Google Scholar 

  376. Wood, H. K. S.: Hypersensitivity, Phytoalexins and Disease Resistance. Mitt. Biol. Bundesanst. Land-Forstwirtsch., Berlin-Dahlem No. 154, 95 (1973).

    Google Scholar 

  377. Wood, A. B., F. V. Robinson, and R. C. A. Lago: Conformation and Hydrogen Bonding of Gossypol. Chem. Ind. 1969, 1738.

    Google Scholar 

  378. Yang, D. T. C, B. J. Wilson, and T. M. Harris: The Structure of Ipomeamaronol: A New Toxic Furanosesquiterpene From Moldy Sweet Potatoes. Phytochemistry 10, 1653(1971).

    CAS  Google Scholar 

  379. Zaki, A. L, N. T. Keen, and D. C. Erwin: Implication of Vergosin and Hemigossypol in the Resistance of Cotton to Verticillium alboatrum. Phytopathology 62, 1402 (1972).

    CAS  Google Scholar 

  380. Zaki, A. L, N. T. Keen, J. J. Sims, and D. C. Erwin: Vergosin and Hemigossypol, Antifungal Compounds Produced in Cotton Plants Inoculated with Verticillium albo-atrum. Phytopathology 62, 1398 (1972).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Springer-Verlag/Wien

About this chapter

Cite this chapter

Gross, D. (1977). Phytoalexine und verwandte Pflanzenstoffe. In: Herz, W., Grisebach, H., Kirby, G.W. (eds) Fortschritte der Chemie Organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products. Fortschritte der Chemie Organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products, vol 34. Springer, Vienna. https://doi.org/10.1007/978-3-7091-8476-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-8476-9_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-8478-3

  • Online ISBN: 978-3-7091-8476-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics