Advertisement

Critical Exponents and Renormalization in the (⌽)4 Scaling Limit

  • J. Glimm
  • A. Jaffe
Conference paper
Part of the Acta Physica Austriaca book series (FEWBODY, volume 16/1976)

Abstract

For dimensions d ≤ 3, the ⌽4 scaling limit defines a nonrenormalizable field theory. The standard relations between critical exponents and renormalization are presented. Arguments supporting the existence of the scaling limit are based on correlation inequalities and the numerical values of Ising model exponents, \( 2\eta _ \ne ^ < \eta _E \) for d=2,3.

Keywords

Ising Model Critical Exponent Point Function Scaling Limit Distance Scale 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Baker, Self-interacting boson quantum field theory and the thermodynamic limit in d dimensions, J. Math. Phys. 16, 1324–1346 (1975).ADSCrossRefGoogle Scholar
  2. 2.
    E. Barouch, B. Mccoy, C. Tray and T. T. WU, The spin-spin correlation functions for the two dimensional Ising-model Exact theory in the scaling limit, to appear.Google Scholar
  3. 3.
    J. Feldman, On the absence of bound states in the ⌽4 quantum field model without symmetry breaking, Cand. J. Phys. 52, 1583–1587 (1974).ADSGoogle Scholar
  4. 4.
    J. Feldman and K. Osterwalder, The Wightman axioms and the mass gap for weakly coupled (\( \left( \varphi \right)_3^4 \)) quantum field theories, to appear.Google Scholar
  5. 5.
    M. Fisher, Rigorous inequalities for critical point correlation exponents, Phys. Rev. 180, 594–600 (1969).ADSCrossRefGoogle Scholar
  6. 6.
    J. Fröhlich, Existence and analyticity in the bare parameters of the \( \left| {\lambda \left( {\overrightarrow \varphi \overrightarrow \varphi } \right)^2 - \sigma \varphi _1^2 - \mu \varphi _1 } \right| \) quantum field models, I. Manuscript.Google Scholar
  7. 7.
    J. Glimm and A. Jaffe, The (λ\( \left( {\lambda \varphi ^4 } \right)_2 \) quantum field theory without cutoffs III. The physical vacuum, Acta Math. 125, 203–261 (1970).MathSciNetCrossRefGoogle Scholar
  8. 8.
    J. Glimm and A. Jaffe, The (λ\( \left( {\lambda \varphi ^4 } \right)_2 \) quantum field theory without cutoffs IV. Perturbation of the Hamiltonian, J. Math. Phys. 13, 1558–1584 (1972).MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    J. Glimm and A. Jaffe, \( \varphi _2^4 \) quantum field theory in the single phase re-gion: Differentiability of the mass and bounds on critical exponents, Phys. Rev. D 10, 536–539 (1974).ADSCrossRefGoogle Scholar
  10. 10.
    J. Glimm and A. Jaffe, Two and three body equations in quantum field models, Commun. Math. Phys. 44, 293–320 (1974).MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    J. Glimm and A. Jaffe, Remark on the existence of \( \varphi _4^4 \). Phys. Rev. Lett. 33, 440–442 (1974).MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    J. Glimm and A. Jaffe, Three particle structure of ⌽4 interactions and the scaling limit, Phys. Rev. D 11, 2816–2827 (1975).MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    J. Glimm, A. Jaffe, and T. Spencer, The particle structure of the weakly coupled P(⌽)2 models and other applications of high temperature expansions. In: Constructive quantum field theory, G. Velo and A. Wightman (eds.) Springer Verlag, Berlin, 1973.Google Scholar
  14. 14.
    J. Glimm, A. Jaffe, and T. Spencer, Existence of phase transitions for \( \varphi _2^4 \) quantum fields, Commun. Math. Phys. To appear.Google Scholar
  15. 15.
    J. Glimm, A. Jaffe, and T. Spencer, A cluster expansion for the \( \varphi _2^4 \) quantum field theory in the two phase region. In preparation.Google Scholar
  16. 16.
    F. Guerra, L. Rosen, and B. Simon, In: Constructive quantum field theory, G. Velo and A. Wightman (eds.) Springer Verlag, Berlin, 1973.Google Scholar
  17. 17.
    D. Isaacson, The critical behavior of the autoharmonic oscillator, NYU Thesis.Google Scholar
  18. 18.
    B. Josephson, Inequality for the specific heat, I Derivation, II Applications, Proc. Phil. Soc. 92, 269–284 (1967).ADSCrossRefGoogle Scholar
  19. 19.
    D. Marchesin, Work in progress.Google Scholar
  20. 20.
    J. Magnen and R. Seneor, The infinite volume limit of the \( \varphi _3^4 \) model, Ann. Inst. H. Poincaré, to appear.Google Scholar
  21. 21.
    K. Osterwalder and R. Schrader, Axioms for Euclidean Green’s functions, Commun. Math. Phys. 31 83–112 (1974).MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    K. Osterwalder and R. Schrader, Axioms for Euclidean Green’s functions II, Commun. Math. Phys. 42, 281–305 (1975).MathSciNetADSzbMATHCrossRefGoogle Scholar
  23. 23.
    Y. Park, Uniform bounds of the pressure of the λ\( \lambda \varphi _3^4 \) field model. Preprint.Google Scholar
  24. 24.
    J. Rosen, Mass renormalization for λ\( \lambda \varphi _2^4 \) Euclidean lattice field theory.Google Scholar
  25. 25.
    J. Rosen, Private communication.Google Scholar
  26. 26.
    E. Seiler and B. Simon, Nelson’s symmetry and all that in the Yukawa and \( \varphi _3^4 \) field theories. Preprint.Google Scholar
  27. 27.
    T. Spencer, The absence of even bound states in \( \varphi _2^4 \cdot \). Commun. Math. Phys. 39, 77–79 (1974).ADSCrossRefGoogle Scholar
  28. 28.
    E. Brezin, J. C. Leguillore and J. Zinn-Justin, Field theoretical approach to critical phenomena. In: Phase transitions and critical phenomena, Vol. VI., Ed. by Domb and Green, Academic Press, New York, to appear.Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • J. Glimm
    • 1
  • A. Jaffe
    • 2
  1. 1.Rockefeller UniversityNew YorkUSA
  2. 2.Harvard UniversityCambridgeUSA

Personalised recommendations