External Field Dependence of Magnetization and Long Range Order in Quantum Field Theory

  • Francesco Guerra
Conference paper
Part of the Acta Physica Austriaca book series (FEWBODY, volume 16/1976)


We consider field theoretical models of self-interacting bosons in the framework of the Euclidean formulation of quantum field theory advanced by Symanzik [26] and Nelson [18]. We employ methods of classical statistical mechanics according to the program advocated in [13], see also [22] and [14].


Range Order Dirichlet State Free Energy Density Disjoint Region Give Boundary Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. L. Dobrushin, Gibbsian Random Fields for Lattice Systems with Pairwise Interactions, Funct. Anal. Applic. 2, 292 (1968).MATHCrossRefGoogle Scholar
  2. [2]
    J. Feldman and K. Osterwalder, The Wightman Axioms and the Mass Gap for Weakly Coupled (Quantum Field Theories, Preprint, Harvard University, February 1975).Google Scholar
  3. [3]
    J. Feldman and K. Osterwalder, The Construction of λ. Preprint, Harvard University, 1975.Google Scholar
  4. [4]
    C. Fortuin, P. Kasteleyn and J. Ginibre, Correlation Inequalities on Some Partially Ordered Sets, Comm. Math. Phys. 22, 89 (1971).MathSciNetADSMATHCrossRefGoogle Scholar
  5. [5]
    J. Fröhlich, Existence and Analyticity in the Bare Parameters of the — Quantum Field Models, I. Princeton University Preprint.Google Scholar
  6. [6]
    J. Fröhlich and B. Simon, Preprint in preparation.Google Scholar
  7. [7]
    J. Glimm and A. Jaffe, The λ(Quantum Field Theory without Cutoffs, III. The Physical Vacuum, Acta Math. 125, 203 (1970).MathSciNetGoogle Scholar
  8. [8]
    J. Glimm and A. Jaffe, Positivity of the Hamiltonian, Fortschritte der Physik 21, 327 (1973).MathSciNetCrossRefGoogle Scholar
  9. [9]
    J. Glimm, A. Jaffe and T. Spencer, The Wightman Axioms and Particle Structure in the Quantum Field Model, Ann. Math. 100, 585 (1974).MathSciNetCrossRefGoogle Scholar
  10. [10]
    R. Griffiths, C. Hurst and S. Sherman, Concavity of Magnetization of an Ising Ferromagnet in a Positive External Field, J. Math. Phys. 11, 790 (1970).MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    F. Guerra, Uniqueness of the Vacuum Energy Density and Van Hove Phenomenon in the Infinite Volume Limit for Two-Dimensional Self-Coupled Bose Fields, Phys. Rev. Lett. 28, 1213 (1972).ADSCrossRefGoogle Scholar
  12. [12]
    F. Guerra, Exponential Bounds in Lattice Field Theory, Report at the Marseille Colloquium, June 1975.Google Scholar
  13. [13]
    F. Guerra, L. Rosen and B. Simon, The P(⌽)2 Euclidean Quantum Field Theory as Classical Statistical Mechanics, Ann, of Math. 101, 111 (1975).MathSciNetCrossRefGoogle Scholar
  14. [14]
    F. Guerra, L. Rosen and B. Simon, Boundary Conditions in the P(⌽)2 Euclidean Quantum Field Theory, Preprint, 1975.Google Scholar
  15. [15]
    O. Lanford and D. Ruelle, Observables at Infinity and States with Short Range Correlations in Statistical Mechanics, Commun. Math. Phys. 13, 194 (1969).MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    J. Lebowitz and E. Presutti, Preprint in preparation.Google Scholar
  17. [17]
    J. Magnen and R. Seneor, The Infinite Volume Limit of the Model, Preprint, Ecole Polytechnique, February 197 5.Google Scholar
  18. [18]
    E. Nelson, Probability Theory and Euclidean Field Theory, Contribution to [27].Google Scholar
  19. [19]
    Y. M. Park, Convergence of Lattice Approximations and Infinite Volume Limit in the (λ⌽4-σ⌽2-μ⌽) Field Theory, ZiF Preprint, Bielefeld 1975.Google Scholar
  20. [20]
    D. Ruelle, Statistical Mechanics, Benjamin, New York (1969).MATHGoogle Scholar
  21. [21]
    E. Seiler and B. Simon, Nelson’s Symmetry and all That in the Yukawa2 and (Field Theories, Preprint, 1975).Google Scholar
  22. [22]
    B. Simon, The P(⌽)3 Euclidean (Quantum) Field Theory, Princeton University Press, 1974.Google Scholar
  23. [23]
    B. Simon, Preprint in preparation.Google Scholar
  24. [24]
    B. Simon and R. Griffiths, The (Field Theory as a Classical Ising Model, Commun. Math. Phys. 33, 145 (1973).MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    T. Spencer, The Mass Gap for the P (⌽)3 Quantum Field Model with a Strong External Field, Commun. Math. Phys. 39, 63 (1974).ADSCrossRefGoogle Scholar
  26. [26]
    K. Symanzik, Euclidean Quantum Field Theory in Local Quantum Theory, R. Jost, Editor, Academic Press, New York (1969).Google Scholar
  27. [27]
    G. Velo and A. Wightman, Constructive Quantum Field Theory, Lecture Notes in Physics, Vol. 25, Springer-Verlag, Berlin (1973).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Francesco Guerra
    • 1
    • 2
  1. 1.Institute for Advanced StudyPrincetonUSA
  2. 2.NapoliItaly

Personalised recommendations