Recent Progress on the Yukawa2 Quantum Field Theory

  • Oliver A. McBryan
Conference paper
Part of the Acta Physica Austriaca book series (FEWBODY, volume 16/1976)


In these talks, we review recent progress on the Yukawa2 model for boson-fermion interactions in two space-time dimensions. We discuss in detail the Matthews — Salam formulation for integrating out the fermions, and obtain bounds on the resulting boson theory sufficient to show existence of an infinite volume limit. The vacuum energy density (“pressure”) converges in this limit and we also obtain uniform ⌽-bounds which establish existence of infinite-volume Wightman functions.


Finite Volume Vacuum Energy Density Local Algebra Infinite Volume Boson Field 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Seiler, E., Commun. Math. Phys. 42, 163–182 (1975).MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    Salam, A., and Mathews, P. T., P. R. 90, 690–695 (1953).MATHCrossRefGoogle Scholar
  3. [3]
    Glimm, J., Commun. Math. Phys. 5, 343–386 (1967).MathSciNetADSMATHCrossRefGoogle Scholar
  4. [4]
    Glimm, J., Commun. Math. Phys. 6, 120–127 (1967).MathSciNetCrossRefGoogle Scholar
  5. [5]
    Glimm, J. and Jaffe, A., Ann. of Phys. 60, 321–383 (1970).MathSciNetADSMATHCrossRefGoogle Scholar
  6. [6]
    Field Theory Models, in Statistical Mechanics and Quantum Field Theory, edited by C. Dewitt and R. Stora, Gordon and Breach, New York 1971.Google Scholar
  7. [7]
    Schrader, R., Ann. of Phys. 70, 412–457 (1972).MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    Glimm, J. and Jaffe, A., J. Funct. Analysis 7, 323–357 (1971).MathSciNetCrossRefGoogle Scholar
  9. [9]
    Mcbryan, O. and Park, Y. M., J. Math. Phys. 6, 104–110 (1975).MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    Osterwalder, K. and Schrader, R., Helv. Phys. Acta 46, 277–302 (1973).MathSciNetGoogle Scholar
  11. [11]
    Mcbryan, O., Volume dependance of Schwinger functions in the Yukawa2 quantum field theory, Commun. Math. Phys. 45, 279–294 (1975).MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    Seiler, E. and Simon, B., Bounds in the Yukawa2 quantum field theory, Commun. Math. Phys., to appear.Google Scholar
  13. [13]
    Magnen, J. and Seneor, R., Announced at this meeting.Google Scholar
  14. [14]
    Mcbryan, O., Convergence of the Vacuum Energy Density, ⌽bounds and Existence of Wightman Functions for the Yukawa2 Model, to appear in Proceedings of the International Colloquium on Quantum Fields, C.N.R.S., Marseille, June 1975.Google Scholar
  15. [15]
    Seiler, E., and Simon, B., Announcement, Private Communications.Google Scholar
  16. [16]
    Glimm, J. and Jaffe, A., J. Math. Phys. 13, 1568–1584 (1972).MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    Nelson, E., J. Funct. Anal. 12, 211–227 (1973).MATHCrossRefGoogle Scholar
  18. [18]
    Simon, B., the P(⌽)2 Euclidean Field Theory, Princeton University Press, Princeton 1974.Google Scholar
  19. [19]
    Dunford, N. and Schwartz, J., Linear Operators, Part II: Interscience Publishers, New York 1963.MATHGoogle Scholar
  20. [20]
    Mcbryan, O., Commun. Math. Phys. 44, 237–243 (1975).MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    Seiler, E. and Simon, B., On finite mass renormalizations in the two dimensional Yukawa model, J. Math. Phys. to appear.Google Scholar
  22. [22]
    Guerra, F., Rosen, L., and Simon, B., Commun. Math. Phys. 27, 10–22 (1972).MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Oliver A. McBryan
    • 1
  1. 1.Department of MathematicsRockefeller UniversityNew YorkUSA

Personalised recommendations