Advertisement

Asymptotic Perturbation Expansion for the S-matrix in P(⌽)2 Quantum Field Theory Models

  • Jean-Pierre Eckmann
Conference paper
Part of the Acta Physica Austriaca book series (FEWBODY, volume 16/1976)

Abstract

This talk describes results of a paper with the same title done jointly with H. Epstein and J. Fröhlich. Similar work has been done simultaneously and independently by J. Dimock, K. Osterwalder, and R. Sénéor, and since they also report at this conference I will not describe any of their methods.

Keywords

Analytic Continuation Wick Rotation Wightman Function Relativistic Quantum Field Theory Admissible Test Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. GJS1.
    J. Glimm, A. Jaffe, T. Spencer: The particle structure of the weakly coupled P(⌽)2 model and other applications of high temperature expansions, in: Constructive Quantum Field Theory, G. Velo, A. Wightman, eds., Springer Lecture Notes in Physics, Vol. 25, Berlin-Heidelberg-New-York 1973.Google Scholar
  2. GJS2.
    J. Glimm, A. Jaffe, T. Spencer: The Wightman axioms and particle structure in the P(⌽)2 quantum field model; Ann. Math. 100, 585 (1974).MathSciNetCrossRefGoogle Scholar
  3. S.
    T. Spencer: The decay of the Bethe-Salpeter kernel in P(⌽)2 quantum field models. Harvard 1975.Google Scholar
  4. G.
    V. Glaser: On the equivalence of the Euclidean and Wightman formulation of field theory. Commun, math. Phys. 37, 257 (1974).MathSciNetADSMATHCrossRefGoogle Scholar
  5. OS.
    K. Osterwalder, R. Schrader: Axioms for Euclidean Green’s functions II. Commun. math. Phys. 42, 281 (1975).MathSciNetADSMATHCrossRefGoogle Scholar
  6. D.
    J. Dimock: Asymptotic perturbation expansion in the P(⌽)2 quantum field theory: Commun. math. Phys. 35, 347 (1974).MathSciNetADSCrossRefGoogle Scholar
  7. EG.
    H. Epstein, V. Glaser: Le rôle de la localité dans la renormalisation perturbative en théorie quantique des champs, in Statistical Mechanics and Quantum Field Theory, C. de Witt and R. Stora Eds., Gordon and Breach, 1971. R. Stora Eds., The role of locality in perturbation theory Ann. Inst. Henri Poincaré 19, 211 (1973).Google Scholar
  8. BEG.
    J. Bros, H. Epstein, V. Glaser: Local analycity properties of the n-particle scattering amplitude. Helv. Phys. Acta 45, 149 (1972).Google Scholar
  9. H.
    K. Hepp: On the connection between the LSZ and Wightman quantum field theory. Commun. Math. Phys. 1, 95 (1965).MathSciNetADSMATHCrossRefGoogle Scholar
  10. R.
    D. Ruelle: Connection between Wightman functions and Green Functions in p-space. I1 Nuovo Cimento, 19, 356 (1961).MathSciNetMATHCrossRefGoogle Scholar
  11. BEGS.
    J. Bros, H. Epstein, V. Glaser, R. Stora, n-point functions in local quantum field theory, to appear in proceedings Les Houches Summer Institute, D. Iagolnitzer ed. (1975).Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Jean-Pierre Eckmann
    • 1
  1. 1.Département de Physique ThéoriqueUniversité de GenèveSwitzerland

Personalised recommendations