Stability of Matter

  • W. Thirring
Conference paper
Part of the Few-Body Systems book series (FEWBODY, volume 15/1976)


One of the fundamental properties of real matter is that its energy is an extensive quantity because the chemical forces are saturating. This ought to be a consequence of nonrelativistic quantum mechanics where a system composed of electrons and nuclei is described by a Hamiltonian
$$ H_N = \sum\limits_{i = 1}^N {\frac{{p_i^2 }} {{2m_i }} + \sum\limits_{i > j} {\left( {e_i e_j - km_i m_j } \right)\left| {x_i - x_j } \right|^{ - 1} } } $$
(Notation: (xi, pi, mi; ei)are position,momentum, mass and charge of the ith particle, N is their total number, κ the gravitational constant.


Ground State Energy Negative Eigenvalue Coulomb Repulsion Schrodinger Equation Neutral System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F.J. Dyson, A. Lenard, J. Math. Phys. 8, 423 (1967).MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    E.H. Lieb, W.E. Thirring, Phys. Rev. Lett. 35, 687 (1975). See ibid. 1116 for errata.ADSCrossRefGoogle Scholar
  3. 3.
    E. Lieb, B. Simon, Phys. Rev. Lett. 31, 681 (1973) and Princeton preprint.ADSCrossRefGoogle Scholar
  4. 4.
    W. Thirring, Vorlesungen über Mathematische Physik, T8. Bargmann, Princeton University Press 1976. E. H. Lieb, W. E. Thirring, Inequalities for the Moments of the Eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities. In the volume dedicated to V.Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • W. Thirring
    • 1
  1. 1.Institut für Theor. PhysikUniversität GrazAustria

Personalised recommendations