Skip to main content

Phase Transitions, Goldstone Bosons and Topological Superselection Rules

  • Conference paper
Current Problems in Elementary Particle and Mathematical Physics

Part of the book series: Few-Body Systems ((FEWBODY,volume 15/1976))

Abstract

A warning and a reflection: The material I propose to cover in these four lectures is quite large, and ideas from different fields in mathematical physics must be combined. Therefore not all the details will be explained. I have tried to select proofs for presentation according to their technical simplicity and elegance. This should not mislead you to believe that mathematical physics is a simple thing. Some of the most outstanding and admirable recent results of, say, constructive quantum field theory (e.g. [GJ1] [GRS] [GJS1] [OS]; see also [CQFT]) require an enormous amount of sophisticated and hard analysis. These results concern the existence of relativistic quantum fields and their detailed properties, e.g. their non-triviality, (in the sense that the scattering matrix is different from the identity [EEF, OSé]). The fact that the proofs of many of these results are very hard and intricate may seem or be unpleasant.

supported in part by U.S. NSF under grant GP-39048 and by ZiF, Universität Bielefeld

Lecture given at XV. internationale Universitätswochen für Kernphysik, Schladming, Austria, February 16–27, 1976.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Araki, H.: J. Math. Phys.4, 1343, (1963), J. Math. Phys.5, 1, (1964), see also K. Osterwalder, Commun. Math. Phys. 29, (1973)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. H. Araki K. Hepp and D. Ruelle, Helv. Phys. Acta 35, 164 , (1962).

    MathSciNet  MATH  Google Scholar 

  3. J.T. Cannon and A. Jaffe, Commun. Math. Phys., 17 (1970).

    Google Scholar 

  4. Coleman, S., “Secret Symmetry” 1973 Erice Lectures (Int. School of Subnuclear Physics, “Ettore Majorana”).

    Google Scholar 

  5. Coleman, S. Phys. Rev. D11, 2088, (1975).

    ADS  Google Scholar 

  6. Coleman, S., R. Jackiv and L. Susskind, Annals of Physics 93, 267, (1975).

    Article  ADS  Google Scholar 

  7. Coleman,S., “Classical Lumps and Their Quantum Descendants” 1975 Erice Lectures (Int. School of Subnuclear Physics “Ettore Majorana”).

    Google Scholar 

  8. Symanzik, K., J. Math. Phys. 7, 510, (1966) Symanzik, K., “A Modified Model of Euclidean Quantum Field Theory”, N.Y.U. Preprint, 1964. Nelson, E., “Quantum Fields and Markoff Fields” in: Proceedings of the Summer Inst, on Partial Diff. Equ., D. Spencer (ed), Berkeley 1971, A. Math. Soc., Providence 1973. Nelson, E., J. Funct. Anal. 12, 97, (1973). Guerra, F., Phys. Rev. Letters 28, 1213,(1972). Glimm, J. and A. Jaffe, refs. [GJ1,3] Glimm, J., A. Jaffe and T. Spencer, refs. [GJS1,2] Guerra, F., L. Rosen and B. Simon, ref. [GRS] Osterwalder, K. and R. Schräder, ref. [OSj. See also refs. [E] [Si] [Y2].

    Article  MathSciNet  ADS  Google Scholar 

  9. Doplicher, S., R. Haag and J. Roberts, Commun. math. Phys. 23, 199, (1971) and 35 49, (1974).

    Article  MathSciNet  ADS  Google Scholar 

  10. Dunford, N. and J. Schwartz, “Linear Operators”, Interscience, New York, 1963.

    MATH  Google Scholar 

  11. Dunlop, F. and C. Newman, Commun. math. Phys. 44, 223, (1975).

    Article  MathSciNet  ADS  Google Scholar 

  12. Eckmann, J.-P., H. Epstein and J. Fröhlich, “Asymptotic Perturbation Expansion for the S-Matrix and....” to appear in Ann. Inst. H. Poincare, 1976.

    Google Scholar 

  13. “Constructive Quantum Field Theory”, G.Velo and A.S. Wightman (eds.), Springer Lecture Notes in Physics, vol. 25, (1973).

    Google Scholar 

  14. Ezawa, H. and J. Swieca, Commun. math. Phys. 5, 330, (1967).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Feldman, J., Commun. math. Phys. 37, 93, (1974).

    Article  ADS  Google Scholar 

  16. Feldman, J., and K. Osterwalder, “The Wightman Axioms and the Mass Gap for Weakly Coupled (ɸ4)3 Quantum Field Theories”, to appear in Annals of Physics.

    Google Scholar 

  17. Feldman, J. and K. Osterwalder, “The Construction of λ(ɸ4)3 Quantum Field Models” Proceedings of the Int. Colloqu. on Math. Methods of QFT, Marseille 1975.

    Google Scholar 

  18. Föllmer, H., “Phase Transition and Martin Boundary”, in: Seminaire de Probabilités IX, Université de Strasbourg, p. 305, Springer Lecture Notes in Math..vol. 465, (1975).

    Google Scholar 

  19. Fröhlich, J., “Quantum Sine-Gordon Equation and Quantum Solitons in Two Space-Time Dimensions”, in: “Renormalization Theory” Int. School of Math. Physics” Ettore Majorana”. 1975, Reidel, Dordrecht-Boston, 1976.

    Google Scholar 

  20. Fröhlich, J.,“Classical and Quantum Statistical Mechanics in One and Two Dimensions: ,to appear in Commun, math. Phys. 1976,

    Google Scholar 

  21. Fröhlich, J., “Phase Transitions in Two Dimensional Quantum Field Models”, ZiF, University of Bielefeld, Preprint 1976; (extended version in preparation).

    Google Scholar 

  22. Fröhlich,J., “Poetic Phenomena in Two Dimensional Quantum Field Theory: ”, Proceedings of the Int. Colloqu. on Math.Methods of QFT, Marseille 1975.

    Google Scholar 

  23. Fröhlich, J., “The Pure Phases, the Irreducible Quantum Field ”, to appear in Annals of Physics, 1976.

    Google Scholar 

  24. Fröhlich, J., “Existence and Analyticity in the Bare Parameters of the \( \left[ {\lambda \left( {\vec \Phi .\vec \Phi } \right)^2 - \sigma \Phi _1^2 - \mu \Phi _1 } \right]\) -Quantum Field Models” to appear.

    Google Scholar 

  25. Fröhlich, J., “New Super-Selection Sectors (“Soliton-States”) in Two Dimensional Bose Quantum Field Models”, to appear in Commun. math. Phys., 1976, and paper in preparation (referred to as [F71]).

    Google Scholar 

  26. Fröhlich, J. and E. Seiler, “The Massive Thirring-Schwinger Model (QED2): Convergence of Perturbation Theory and Particle Structure”, to appear in Helv. Phys. Acta.

    Google Scholar 

  27. Fröhlich, J. and B. Simon, “Pure States for General Theories: Construction, Regularity and Variational Equality”, sub-mitted to Ann. Math.

    Google Scholar 

  28. Fröhlich, J., B.Simon and T. Spencer, “Infrared Bounds, Phase Transistions and Continuous Symmetry Breaking”, Princeton University, preprint 1976; results announced in Phys. Rev. Letters 36, 804, (1976).

    Google Scholar 

  29. Gallavotti, G. and A. Martin-Löf, Commun. math. Phys. 25, 87, (1972).

    Article  ADS  Google Scholar 

  30. Glimm, J. and A. Jaffe, Fortschritte d. Physik 21, 327, (1973).

    Article  MathSciNet  ADS  Google Scholar 

  31. Glimm, J. and A. Jaffe, Commun. math. Phys. 22, 1, (1971)

    Google Scholar 

  32. Glimm, J. and A. Jaffe, (ɸ, II,III, IV), Ann. Math. 91, 362, (1970), Acta Math. 125, 203, (1970), J. Math. Phys. 13, 1568, (1972).

    Google Scholar 

  33. Glimm, J., A. Jaffe and T. Spencer, “The Particle Structure of The Weakly Coupled P(ɸ)2 Model and Other Applications of High Temperature Expansions, Part II The Cluster Expansion”, contribution in ref. [E] and refs. given there.

    Google Scholar 

  34. Glimm, J., A. Jaffe and T. Spencer, Commun. math. Phys. 45, 203, (1975), and paper in preparcition.

    Article  MathSciNet  ADS  Google Scholar 

  35. Guerra, F., “Exponential Bounds in Lattice Field Theory”, Proceedings of the Int. Colloqu. on Math. Methods of QFT, Marseille 1975.

    Google Scholar 

  36. Guerra, F., L. Rosen and B. Simon, Ann. Math. 101, 111, (1975).

    Article  MathSciNet  Google Scholar 

  37. Haag, R. and D. Kastler, J. Math. Phys. 5, 848, (1964).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. Herbst, I. “Remarks on Canonical Quantum Field Theory”, Princeton University, Preprint 1975.

    Google Scholar 

  39. Statistical Mechanics and Quantum Field Theory”, Les Houches 1970 C. De Witt and R. Stora (eds.)f Gordon and Breach, New York, 1971.

    Google Scholar 

  40. Jost, R., “The General Theory of Quantized Fields”, A. Math. Soc., Providence, R.I., 1965.

    Google Scholar 

  41. Kac, M., “On Applying Mathematics: Reflections and Examples”, Quarterly of Appl. Math. 30, 17, (1972).

    MATH  Google Scholar 

  42. Kunz, H., private communication.

    Google Scholar 

  43. Lamb Jr. G., Rev. Modern Physics 43, 99, (1971)

    Article  MathSciNet  ADS  Google Scholar 

  44. Lebowitz, J., and O. Penrose, Phys. Rev. Letters 35, 549, (1975)

    Article  ADS  Google Scholar 

  45. Magnen, J. and R. Sénéor, “The Infinite Volume Limit of the (ɸ4) Model”, to appear in Ann. Inst. H. Poincare.

    Google Scholar 

  46. Malishev, V.A. Commun. math. Phys. 40, 75, (1975).

    Article  ADS  Google Scholar 

  47. McBryan, O., Nuovo Cimento, 18A, 654, (1973).

    Article  MathSciNet  ADS  Google Scholar 

  48. Mermin, N.D., J. Math. Phys. 8, 1061, (1967).

    Article  ADS  Google Scholar 

  49. Nelson, E., “Probability Theory and Euclidean Field Theory”, contribution in ref. [E].

    Google Scholar 

  50. Osterwalder, K. and R. Schräder, Commun. math. Phys. 31, 83, (1973) and 42, 281, (1975).

    Article  ADS  MATH  Google Scholar 

  51. Osteralder, K. and R. Seneor, The S-Matrix is Non-Trivial in (ɸ4)2 . . . . “ , to appear in Helv. Phys. Acta.

    Google Scholar 

  52. Park, Y.M., “Convergence of Lattice Approximations and Infinite Volume Limit in the (λɸ4-σɸ2-μɸ)3 Field Theory”, Schladming Lectures, 1976, and J. Math. Phys. 16,1065, (1975), and to appear in J. Math. Phys.

    Google Scholar 

  53. Peierls, R., Poc. Cambridge Phil. Soc., 32, 477, (1936).

    Article  ADS  MATH  Google Scholar 

  54. general refs. on phase transitions: See refs.[H], [R], [FSS], [GM] and refs. given there. Results that are somewhat complementary to what is discussed in these lectures may be found in L. Onsager, Phys. Rev. 65, 117, (1944), (Ising model), H. Araki and E.J. Woods, J. Math. Phys. 4, 637, (1963), (free Bose gas) T.H. Berlin and M. Kac Phys. Rev. 86, 821, (1952), E. Lieb and C.J. Thompson, J. Math. Phys. 10, 1403, (1969), and refs given there; (spherical model). N.N. Bogolinbov, Soviet Physics JETP, 7, 41 (1958), W. Thirring and A. Wehrl, Commun, math. Phys. 4, 301, (1966); (BCS model). K. Hepp and E. Lieb, Ann. Phys. 76, 360, (1972), and contribution to ref. [E]; (Laser models). R. Griffiths, Phys. Rev. 136A, 437, (1967), R. Dobrushin, Funct. Anal. Appl. 2, 44, (1968), (Peierls argument) R. Israel, Princeton University Series in Physics, Monograph, to appear; (general results on phase transitions), and Commun, math. Phys. 43, 59, (1975). F. Dyson, Commun, math. Phys. 12, 91, (1969),

    Google Scholar 

  55. Roberts, J., “Local Cohomology and Super- selection Structure”, Centre de Physique Théorique, C.N.R.S. — Marseille, Preprint 1976. For results concerning the solitons of the free massless, scalar fields in two dimensions, see R.F. Streater and I.F. Wilde Nuclear Physics B24, 561, (1970); and P. Bonnard and R.F. Streater, ZiF, University of Bielefeld, Preprint 1975.

    Google Scholar 

  56. Ruelle, P. “Statistical Mechanics — Rigorous Results”, Benjamin, New York, 1969.

    MATH  Google Scholar 

  57. Seiler, E. and B. Simon, “Nelson’s Symmetry and All That in the (Yukawa)2 and (ɸ4)3 Field Theories”, to appear in Annals of Phys. Field Theories”, to appear in Annals of Phys.

    Google Scholar 

  58. Field Theory, Princeton University Press, Princeton 1974.

    Google Scholar 

  59. Simon, B. and R. Griffiths, Commun, math. Phys. 33, (1973) .

    Google Scholar 

  60. St. Exupêry, A. “Le Petit Prince”.

    Google Scholar 

  61. Streater, R.F. and A.S. Wightman, “PCT, Spin and Statistics and All That”, Benjamin, New York, 1964.

    MATH  Google Scholar 

  62. Sylvester G. and H. van Beijeren, “Phase Transitions for Continuous Spin Ising Ferromagnets”, Yeshiva University, Preprint 1975.

    Google Scholar 

  63. See refs. [H] [R]; also K. Huang, “Statistical Mechanics”, Wiley and Sons, New York-London 1963.

    Google Scholar 

  64. Refs. on the Euclidean description of the (Yukawa)2 quantum field model are: E. Seiler, Commun. math Phys. 42, 163, (1975). E. Seiler and B. Simon, J. math Phys. to appear (“finite mass renormalizations”)and ref. [SeSi]. E. Seiler and B. Simon, Commun, math. Phys. 45, 99, (1975).O. McBryan, Commun, math. Phys. 44, 237, (1975). O. McBryan, Commun, math. Phys. 45, 279, (1975). O. McBryan, Contribution to the Proceedings of the Int. Colloqu. on Math. Methods of QFT, Marseille, 1975. J. Magnen and R. Seneor, “The Wightman Axioms for the Weakly Coupled Yukawa Model in Two Dimensions”, ZiF, University of Bielefeld, Preprint, 1975. A. Cooper and L. Rosen, “The Weakly Coupled (Yukawa)2 Field Theory: Cluster Expansion and Wightman Axioms”, Princeton University, Princeton, 1976.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Springer-Verlag

About this paper

Cite this paper

Fröhlich, J. (1976). Phase Transitions, Goldstone Bosons and Topological Superselection Rules. In: Urban, P. (eds) Current Problems in Elementary Particle and Mathematical Physics. Few-Body Systems, vol 15/1976. Springer, Vienna. https://doi.org/10.1007/978-3-7091-8462-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-8462-2_5

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-8464-6

  • Online ISBN: 978-3-7091-8462-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics