Advertisement

Phase Transitions, Goldstone Bosons and Topological Superselection Rules

  • J. Fröhlich
Conference paper
Part of the Few-Body Systems book series (FEWBODY, volume 15/1976)

Abstract

A warning and a reflection: The material I propose to cover in these four lectures is quite large, and ideas from different fields in mathematical physics must be combined. Therefore not all the details will be explained. I have tried to select proofs for presentation according to their technical simplicity and elegance. This should not mislead you to believe that mathematical physics is a simple thing. Some of the most outstanding and admirable recent results of, say, constructive quantum field theory (e.g. [GJ1] [GRS] [GJS1] [OS]; see also [CQFT]) require an enormous amount of sophisticated and hard analysis. These results concern the existence of relativistic quantum fields and their detailed properties, e.g. their non-triviality, (in the sense that the scattering matrix is different from the identity [EEF, OSé]). The fact that the proofs of many of these results are very hard and intricate may seem or be unpleasant.

Keywords

Phase Transition Thermodynamic Limit Hamilton Function Goldstone Boson Bare Mass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A]
    Araki, H.: J. Math. Phys.4, 1343, (1963), J. Math. Phys.5, 1, (1964), see also K. Osterwalder, Commun. Math. Phys. 29, (1973)MathSciNetADSMATHCrossRefGoogle Scholar
  2. [AHR]
    H. Araki K. Hepp and D. Ruelle, Helv. Phys. Acta 35, 164 , (1962).MathSciNetMATHGoogle Scholar
  3. [CJ]
    J.T. Cannon and A. Jaffe, Commun. Math. Phys., 17 (1970).Google Scholar
  4. [Co1]
    Coleman, S., “Secret Symmetry” 1973 Erice Lectures (Int. School of Subnuclear Physics, “Ettore Majorana”).Google Scholar
  5. [Co2]
    Coleman, S. Phys. Rev. D11, 2088, (1975).ADSGoogle Scholar
  6. [Co3]
    Coleman, S., R. Jackiv and L. Susskind, Annals of Physics 93, 267, (1975).ADSCrossRefGoogle Scholar
  7. [Co4]
    Coleman,S., “Classical Lumps and Their Quantum Descendants” 1975 Erice Lectures (Int. School of Subnuclear Physics “Ettore Majorana”).Google Scholar
  8. [CQFT]
    Symanzik, K., J. Math. Phys. 7, 510, (1966) Symanzik, K., “A Modified Model of Euclidean Quantum Field Theory”, N.Y.U. Preprint, 1964. Nelson, E., “Quantum Fields and Markoff Fields” in: Proceedings of the Summer Inst, on Partial Diff. Equ., D. Spencer (ed), Berkeley 1971, A. Math. Soc., Providence 1973. Nelson, E., J. Funct. Anal. 12, 97, (1973). Guerra, F., Phys. Rev. Letters 28, 1213,(1972). Glimm, J. and A. Jaffe, refs. [GJ1,3] Glimm, J., A. Jaffe and T. Spencer, refs. [GJS1,2] Guerra, F., L. Rosen and B. Simon, ref. [GRS] Osterwalder, K. and R. Schräder, ref. [OSj. See also refs. [E] [Si] [Y2].MathSciNetADSCrossRefGoogle Scholar
  9. [DHR]
    Doplicher, S., R. Haag and J. Roberts, Commun. math. Phys. 23, 199, (1971) and 35 49, (1974).MathSciNetADSCrossRefGoogle Scholar
  10. [DS]
    Dunford, N. and J. Schwartz, “Linear Operators”, Interscience, New York, 1963.MATHGoogle Scholar
  11. [DN]
    Dunlop, F. and C. Newman, Commun. math. Phys. 44, 223, (1975).MathSciNetADSCrossRefGoogle Scholar
  12. [EEF]
    Eckmann, J.-P., H. Epstein and J. Fröhlich, “Asymptotic Perturbation Expansion for the S-Matrix and....” to appear in Ann. Inst. H. Poincare, 1976.Google Scholar
  13. [E]
    “Constructive Quantum Field Theory”, G.Velo and A.S. Wightman (eds.), Springer Lecture Notes in Physics, vol. 25, (1973).Google Scholar
  14. [ESw]
    Ezawa, H. and J. Swieca, Commun. math. Phys. 5, 330, (1967).MathSciNetADSMATHCrossRefGoogle Scholar
  15. [Fe]
    Feldman, J., Commun. math. Phys. 37, 93, (1974).ADSCrossRefGoogle Scholar
  16. [FeO1]
    Feldman, J., and K. Osterwalder, “The Wightman Axioms and the Mass Gap for Weakly Coupled (ɸ4)3 Quantum Field Theories”, to appear in Annals of Physics.Google Scholar
  17. [Fe02]
    Feldman, J. and K. Osterwalder, “The Construction of λ(ɸ4)3 Quantum Field Models” Proceedings of the Int. Colloqu. on Math. Methods of QFT, Marseille 1975.Google Scholar
  18. [Fö]
    Föllmer, H., “Phase Transition and Martin Boundary”, in: Seminaire de Probabilités IX, Université de Strasbourg, p. 305, Springer Lecture Notes in Math..vol. 465, (1975).Google Scholar
  19. [F1]
    Fröhlich, J., “Quantum Sine-Gordon Equation and Quantum Solitons in Two Space-Time Dimensions”, in: “Renormalization Theory” Int. School of Math. Physics” Ettore Majorana”. 1975, Reidel, Dordrecht-Boston, 1976.Google Scholar
  20. [F2]
    Fröhlich, J.,“Classical and Quantum Statistical Mechanics in One and Two Dimensions: ,to appear in Commun, math. Phys. 1976,Google Scholar
  21. [F3]
    Fröhlich, J., “Phase Transitions in Two Dimensional Quantum Field Models”, ZiF, University of Bielefeld, Preprint 1976; (extended version in preparation).Google Scholar
  22. [F4]
    Fröhlich,J., “Poetic Phenomena in Two Dimensional Quantum Field Theory: ”, Proceedings of the Int. Colloqu. on Math.Methods of QFT, Marseille 1975.Google Scholar
  23. [F5]
    Fröhlich, J., “The Pure Phases, the Irreducible Quantum Field ”, to appear in Annals of Physics, 1976.Google Scholar
  24. [F6]
    Fröhlich, J., “Existence and Analyticity in the Bare Parameters of the \( \left[ {\lambda \left( {\vec \Phi .\vec \Phi } \right)^2 - \sigma \Phi _1^2 - \mu \Phi _1 } \right]\) -Quantum Field Models” to appear.Google Scholar
  25. [F7]
    Fröhlich, J., “New Super-Selection Sectors (“Soliton-States”) in Two Dimensional Bose Quantum Field Models”, to appear in Commun. math. Phys., 1976, and paper in preparation (referred to as [F71]).Google Scholar
  26. [FSe]
    Fröhlich, J. and E. Seiler, “The Massive Thirring-Schwinger Model (QED2): Convergence of Perturbation Theory and Particle Structure”, to appear in Helv. Phys. Acta.Google Scholar
  27. [FS]
    Fröhlich, J. and B. Simon, “Pure States for General Theories: Construction, Regularity and Variational Equality”, sub-mitted to Ann. Math.Google Scholar
  28. [FSS]
    Fröhlich, J., B.Simon and T. Spencer, “Infrared Bounds, Phase Transistions and Continuous Symmetry Breaking”, Princeton University, preprint 1976; results announced in Phys. Rev. Letters 36, 804, (1976).Google Scholar
  29. [GM]
    Gallavotti, G. and A. Martin-Löf, Commun. math. Phys. 25, 87, (1972).ADSCrossRefGoogle Scholar
  30. [GJ1]
    Glimm, J. and A. Jaffe, Fortschritte d. Physik 21, 327, (1973).MathSciNetADSCrossRefGoogle Scholar
  31. [GJ2]
    Glimm, J. and A. Jaffe, Commun. math. Phys. 22, 1, (1971)Google Scholar
  32. [GJ3]
    Glimm, J. and A. Jaffe, (ɸ, II,III, IV), Ann. Math. 91, 362, (1970), Acta Math. 125, 203, (1970), J. Math. Phys. 13, 1568, (1972).Google Scholar
  33. [GJS1]
    Glimm, J., A. Jaffe and T. Spencer, “The Particle Structure of The Weakly Coupled P(ɸ)2 Model and Other Applications of High Temperature Expansions, Part II The Cluster Expansion”, contribution in ref. [E] and refs. given there.Google Scholar
  34. [GJS2]
    Glimm, J., A. Jaffe and T. Spencer, Commun. math. Phys. 45, 203, (1975), and paper in preparcition.MathSciNetADSCrossRefGoogle Scholar
  35. [Gu]
    Guerra, F., “Exponential Bounds in Lattice Field Theory”, Proceedings of the Int. Colloqu. on Math. Methods of QFT, Marseille 1975.Google Scholar
  36. [GRS]
    Guerra, F., L. Rosen and B. Simon, Ann. Math. 101, 111, (1975).MathSciNetCrossRefGoogle Scholar
  37. [HK]
    Haag, R. and D. Kastler, J. Math. Phys. 5, 848, (1964).MathSciNetADSMATHCrossRefGoogle Scholar
  38. [He]
    Herbst, I. “Remarks on Canonical Quantum Field Theory”, Princeton University, Preprint 1975.Google Scholar
  39. [H]
    Statistical Mechanics and Quantum Field Theory”, Les Houches 1970 C. De Witt and R. Stora (eds.)f Gordon and Breach, New York, 1971.Google Scholar
  40. [Jo]
    Jost, R., “The General Theory of Quantized Fields”, A. Math. Soc., Providence, R.I., 1965.Google Scholar
  41. [K]
    Kac, M., “On Applying Mathematics: Reflections and Examples”, Quarterly of Appl. Math. 30, 17, (1972).MATHGoogle Scholar
  42. [Ku]
    Kunz, H., private communication.Google Scholar
  43. [La]
    Lamb Jr. G., Rev. Modern Physics 43, 99, (1971)MathSciNetADSCrossRefGoogle Scholar
  44. [LP]
    Lebowitz, J., and O. Penrose, Phys. Rev. Letters 35, 549, (1975)ADSCrossRefGoogle Scholar
  45. [MaSé]
    Magnen, J. and R. Sénéor, “The Infinite Volume Limit of the (ɸ4) Model”, to appear in Ann. Inst. H. Poincare.Google Scholar
  46. [Ma]
    Malishev, V.A. Commun. math. Phys. 40, 75, (1975).ADSCrossRefGoogle Scholar
  47. [McB]
    McBryan, O., Nuovo Cimento, 18A, 654, (1973).MathSciNetADSCrossRefGoogle Scholar
  48. [M]
    Mermin, N.D., J. Math. Phys. 8, 1061, (1967).ADSCrossRefGoogle Scholar
  49. [N]
    Nelson, E., “Probability Theory and Euclidean Field Theory”, contribution in ref. [E].Google Scholar
  50. [OS]
    Osterwalder, K. and R. Schräder, Commun. math. Phys. 31, 83, (1973) and 42, 281, (1975).ADSMATHCrossRefGoogle Scholar
  51. [OSe]
    Osteralder, K. and R. Seneor, The S-Matrix is Non-Trivial in (ɸ4)2 . . . . “ , to appear in Helv. Phys. Acta.Google Scholar
  52. [Pa]
    Park, Y.M., “Convergence of Lattice Approximations and Infinite Volume Limit in the (λɸ4-σɸ2-μɸ)3 Field Theory”, Schladming Lectures, 1976, and J. Math. Phys. 16,1065, (1975), and to appear in J. Math. Phys.Google Scholar
  53. [Pe]
    Peierls, R., Poc. Cambridge Phil. Soc., 32, 477, (1936).ADSMATHCrossRefGoogle Scholar
  54. [PT]
    general refs. on phase transitions: See refs.[H], [R], [FSS], [GM] and refs. given there. Results that are somewhat complementary to what is discussed in these lectures may be found in L. Onsager, Phys. Rev. 65, 117, (1944), (Ising model), H. Araki and E.J. Woods, J. Math. Phys. 4, 637, (1963), (free Bose gas) T.H. Berlin and M. Kac Phys. Rev. 86, 821, (1952), E. Lieb and C.J. Thompson, J. Math. Phys. 10, 1403, (1969), and refs given there; (spherical model). N.N. Bogolinbov, Soviet Physics JETP, 7, 41 (1958), W. Thirring and A. Wehrl, Commun, math. Phys. 4, 301, (1966); (BCS model). K. Hepp and E. Lieb, Ann. Phys. 76, 360, (1972), and contribution to ref. [E]; (Laser models). R. Griffiths, Phys. Rev. 136A, 437, (1967), R. Dobrushin, Funct. Anal. Appl. 2, 44, (1968), (Peierls argument) R. Israel, Princeton University Series in Physics, Monograph, to appear; (general results on phase transitions), and Commun, math. Phys. 43, 59, (1975). F. Dyson, Commun, math. Phys. 12, 91, (1969),Google Scholar
  55. [Ro]
    Roberts, J., “Local Cohomology and Super- selection Structure”, Centre de Physique Théorique, C.N.R.S. — Marseille, Preprint 1976. For results concerning the solitons of the free massless, scalar fields in two dimensions, see R.F. Streater and I.F. Wilde Nuclear Physics B24, 561, (1970); and P. Bonnard and R.F. Streater, ZiF, University of Bielefeld, Preprint 1975.Google Scholar
  56. [R]
    Ruelle, P. “Statistical Mechanics — Rigorous Results”, Benjamin, New York, 1969.MATHGoogle Scholar
  57. [SeSi]
    Seiler, E. and B. Simon, “Nelson’s Symmetry and All That in the (Yukawa)2 and (ɸ4)3 Field Theories”, to appear in Annals of Phys. Field Theories”, to appear in Annals of Phys.Google Scholar
  58. [Si]
    Field Theory, Princeton University Press, Princeton 1974.Google Scholar
  59. [SG]
    Simon, B. and R. Griffiths, Commun, math. Phys. 33, (1973) .Google Scholar
  60. [St E]
    St. Exupêry, A. “Le Petit Prince”.Google Scholar
  61. [St W]
    Streater, R.F. and A.S. Wightman, “PCT, Spin and Statistics and All That”, Benjamin, New York, 1964.MATHGoogle Scholar
  62. [SvB]
    Sylvester G. and H. van Beijeren, “Phase Transitions for Continuous Spin Ising Ferromagnets”, Yeshiva University, Preprint 1975.Google Scholar
  63. [T]
    See refs. [H] [R]; also K. Huang, “Statistical Mechanics”, Wiley and Sons, New York-London 1963.Google Scholar
  64. [Y2]
    Refs. on the Euclidean description of the (Yukawa)2 quantum field model are: E. Seiler, Commun. math Phys. 42, 163, (1975). E. Seiler and B. Simon, J. math Phys. to appear (“finite mass renormalizations”)and ref. [SeSi]. E. Seiler and B. Simon, Commun, math. Phys. 45, 99, (1975).O. McBryan, Commun, math. Phys. 44, 237, (1975). O. McBryan, Commun, math. Phys. 45, 279, (1975). O. McBryan, Contribution to the Proceedings of the Int. Colloqu. on Math. Methods of QFT, Marseille, 1975. J. Magnen and R. Seneor, “The Wightman Axioms for the Weakly Coupled Yukawa Model in Two Dimensions”, ZiF, University of Bielefeld, Preprint, 1975. A. Cooper and L. Rosen, “The Weakly Coupled (Yukawa)2 Field Theory: Cluster Expansion and Wightman Axioms”, Princeton University, Princeton, 1976.Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • J. Fröhlich
    • 1
  1. 1.Department of MathematicsPrinceton UniversityPrincetonUSA

Personalised recommendations