Advertisement

Schwinger Functionals and Euclidean Measures

  • J. L. Challifour
Conference paper
Part of the Few-Body Systems book series (FEWBODY, volume 15/1976)

Abstract

It is an understatement to say that the last ten years of constructive field theory have brought about a revolution in our understanding of relativistic quantum fields. Even though the models studied so far have been super-renormalizable they have provided not only new techniques but a new conceptual framework which unifies quantum fields and statistical mechanics. Whether this relationship will continue for the study of more complex models is the immediate challenge of the next few years.

Keywords

Continuous Norm Continuous Spin Infinite Volume Correlation Inequality Euclidean Measure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B.J. Borchers, On structure of the algebra of field operators, Nuovo Cimento 4, 214 (1962).MathSciNetGoogle Scholar
  2. 2.
    H.J. Borchers, J. Yngvason, Necessary and Sufficient Conditions for Integral Representations of Wightman Functionals at Schwinger Points. Göttingen University Preprint, 1975.Google Scholar
  3. 3.
    H.J. Borchers, J. Yngvason, Integral Representations for Schwinger Functionals and the Moment Problem over Nuclear Spaces, Commun. Math. Phys. 43, 255 (1975).MathSciNetADSMATHCrossRefGoogle Scholar
  4. 4.
    J.L. Challifour, S.P. Slinker, Euclidean Field Theory, I. The Moment Problem. Commun. Math. Phys. JL3, 41 (1975).Google Scholar
  5. 5.
    J.L. Challifour, Euclidean Field Theory. II. Remarks on Embedding the Relativistic Hilbert Space. To appear in J. Math. Phys.Google Scholar
  6. 6.
    J.L. Challifour, S.P. Slinker, unpublished.Google Scholar
  7. 7.
    J. Dimock, The P (ɸ)2 Green’s Functions: Asymptotic Perturbation Expansion. SUNY (Buffalo) Preprint, 1975.Google Scholar
  8. 8.
    J.P. Eckmann, H. Epstein, J. Fröhlich, Asymptotic Perturbation Expansion for the S-Matrix and the Definition of Time Ordered Functions in Relativistic Quantum Field Models.Google Scholar
  9. 9.
    J. Fröhlich, Schwinger Functions and their Generating Functionals, I. Helv. Phys. Acta £7, 265 (1974).Google Scholar
  10. 10.
    L.M. Gelfand, N.Ya. Vilenkin, Generalized Functions, Vol. 4. Academic Press, 1964 New York.Google Scholar
  11. 11.
    J. Glimm, Boson Fields with Non-linear Self-Inter- action in Two Dimensions, Commun. Math. Phys. 12 (1968).Google Scholar
  12. 12.
    J. Glimm, A. Jaffe, Quantum Field Theory Models in Statistical Mechanics and Quantum Field Theory, Les Houches, 1970, ed. C. DeWitt and R. Stora, Gordon and Breach, 1971, New York.Google Scholar
  13. 13.
    J. Glimm, A. Jaffe, Boson Quantum Field Models, in Mathematics of Contemporary Physics, ed. R.Streater, Academic Press, 1972, New York.Google Scholar
  14. 14.
    J.Glimm, A.Jaffe, The n-Particle Cluster Expansion for the P(ɸ)2 Quantum Field Model, unpublished.Google Scholar
  15. 15.
    J.Glimm, A.Jaffe, Remark on the Existence of ɸ. Phys. Rev. Letters, 33, 440 (1974).ADSCrossRefGoogle Scholar
  16. 16.
    J.Glimm, A.Jaffe, T.Spencer, The Wightman Axioms a,nd Particle Structure in the P(ɸ)2 Quantum Field Model, Ann. Math. 100, 585 (1974).CrossRefGoogle Scholar
  17. 17.
    J. Glimm, A. Jaffe, T. Spencer, Phase Transitions for (ɸ4)2 Quantum Fields, Commun. Math. Phys. 45, 203 (1975).MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    R.B. Griffiths, Correlation in Ising Ferromagnets, I., II. J. Math. Phys. 8, 478, 484 (1967).ADSGoogle Scholar
  19. 19.
    R.B. Griffiths, C.A. Hurst, S. Sherman, Concavity of Magnetization of an Ising Ferromagnet in a Positive External Field. J. Math. Phys. 11, 790 (1970) .Google Scholar
  20. 20.
    F. Guerra, L. Rosen, B. Simon, The P(ɸ)2 Euclidean Quantum Field Theory as Classical Statistical Mechanics. Ann. Math. 101, 111 (1975).MathSciNetCrossRefGoogle Scholar
  21. 21.
    G.C. Hegerfeldt, Extremal Decomposition of Wightman Functions and of States on Nuclear *-Algebras by Choquet-Theory. Commun. Math. Phys. 45, 133 (1975).MathSciNetADSMATHCrossRefGoogle Scholar
  22. 22.
    D.G. Kelley, S. Sherman, General Griffiths1 Inequalities on Correlations in Ising Ferromagnets. J. Math Phys. 9, 466 (1968) .Google Scholar
  23. 23.
    T.D. Lee, C.N. Yang, Statistical Theory of Equations of State and Phase Transitions, II, Lattice Gas and Ising Model. Phys. Rev. 87, 410 (1952).MathSciNetADSMATHCrossRefGoogle Scholar
  24. 24.
    R.A. Minlos, Generalized Random Processes and their Extension to a Measure. Trudy. Mosk. Mat. Obs. 8, 497 (1959).MathSciNetGoogle Scholar
  25. 25.
    E. Nelson, A Quartic Interaction in Two Dimensions, in Mathematical Theory of Elementary Particles, ed. R. Goodman and I. Segal, M. I. T. Press, 1966 Cambridge, Mass.Google Scholar
  26. 26.
    E. Nelson, Construction of Quantum Fields from Markoff Fields, J. Funct. Analysis 12, 97 (1973).MATHCrossRefGoogle Scholar
  27. 27.
    E. Nelson, The Free Markov Field. J. Funct. Anal. 12, 211 (1973).MATHCrossRefGoogle Scholar
  28. 28.
    E. Nelson, Probability Theory and Euclidean Field Theory, in Constructive Quantum Field Theory, ed. G. Velo and A. Wightman. Lecture Notes in Physics, Vol. 25, Springer-Verlag, 1973 Heidelberg.Google Scholar
  29. 29.
    C,M. Newman, Inequalities for Ising Models and Field Theories which Obey the Lee-Yang Theorem. Commun. Math. Phys. 41, 1 (1975).ADSCrossRefGoogle Scholar
  30. 30.
    C.M. Newman, Gaussian Correlation Inequalities for Ferromagnets. Indiana University Preprint, 1975.Google Scholar
  31. 31.
    C.M, Newman, The Construction of Stationary Two-Dimensional Markoff Fields with an Application to Quantum Field Theory. J. Funct. Anal. 14, 44 (1973),Google Scholar
  32. 32.
    K. Osterwalder, R. Schrader, Axioms for Green’s Functions. I. Commun, Math. Physics 31, 83 (1973) and II, ibid 42, 281 (1975).MathSciNetADSCrossRefGoogle Scholar
  33. 33.
    K. Osterwalder, R. Seneor, The Scattering Matrix is non-trivial for weakly coupled P (ɸ) 2 models. Harvard University Preprint, 1975.Google Scholar
  34. 34.
    L. Schwartz, Theorie des Distributions, Tome I. Herman, 1957, Paris.MATHGoogle Scholar
  35. 35.
    J. Schwinger, On the Euclidean Structure of Relativistic Field Theory. Proc, Nat. Acad. Sci. U.S., 44, 956 (1958).MathSciNetADSMATHCrossRefGoogle Scholar
  36. 36.
    J. Schwinger, Euclidean Quantum Electrodynamics. Phys. Rev. 115, 721 (1959).MathSciNetADSMATHCrossRefGoogle Scholar
  37. 37.
    B. Simon, Positivity of the Hamiltonian Semigroup and the Construction of Euclidean Region Fields. Helv. Phys. Acta. 46, 686 (1973).MathSciNetGoogle Scholar
  38. 38.
    B. Simon, The P (ɸ)2 Euclidean (Quantum) Field Theory. Princeton Series in Physics, Princeton University Press, 1974 Princeton, N.J. 4Google Scholar
  39. 39.
    B. Simon, R.B. Griffiths, The U2 Field Theory as a Classical Ising Model. Commun. Math. Phys. 33, 145 (1973).MathSciNetADSCrossRefGoogle Scholar
  40. 40.
    T. Spencer, The Absence of Even Bound States for λ(ɸ4)2. Commun. Math. Phys. 39, 77 (1974).ADSCrossRefGoogle Scholar
  41. 41.
    T, Spencer, The Decay of the Bethe-Salpeter Kernel in P(ɸ)2 Quantum Field Models. Commun. Math, Phys. 44, 143 (1975).ADSCrossRefGoogle Scholar
  42. 42.
    T. Spencer, F. Zirilli, Scattering States and Bound States in λP (ɸ). Rockefeller University Preprint, 1975.Google Scholar
  43. 43.
    K. Symanzik, Euclidean Quantum Field Theory, I. Equations for a scalar model. J. Math. Phys. 510 (1966) .Google Scholar
  44. 44.
    K. Symanzik, Euclidean Quantum Field Theory, in Varenna Course XLV, “Enrico Fermi” School of Physics, ed. R. Jost Academic Press, 1969 New York.Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • J. L. Challifour
    • 1
    • 2
  1. 1.ZiFUniversity of BielefeldGermany
  2. 2.Depts. of Mathematics and PhysicsIndiana UniversityBloomingtonUSA

Personalised recommendations