The Wondrous Things: A Review of Probabilistic Concepts in Quantum Dynamics

  • L. Streit
Conference paper
Part of the Few-Body Systems book series (FEWBODY, volume 15/1976)


Eleven years ago when I gave a set of lectures on path integrals — most prominently the Wiener and Feynman integrals — here in Schladming [1], this probabilistic approach played a rather marginal role in quantum physics, mainly as a compact but mostly formal reformulation of quantum (field) theory.


Probability Measure Characteristic Function Free Field Probabilistic Concept Null Plane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Streit, Acta Phys. Austr. Suppl. II, 2 (1966).Google Scholar
  2. 2.
    E. Nelson, A Quartic Interaction in Two Dimensions, in E. Goodman and I. Segal (eds.), Mathematical Theory of Elementary Particles (Cambridge 1966 ).Google Scholar
  3. 3.
    E. Nelson, Quantum Fields and Markoff Fields, Symp. in Pure Mathem. 23, 413 (1973).Google Scholar
  4. 4.
    J. Glimm and A. Jaffe, Phys. Rev. Lett. 33, 440 (1974).MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    D.I. Olive, Karpacz Lectures 1975.Google Scholar
  6. 6.
    E. Lukacs, Characteristic Functions,(London 1970 ).Google Scholar
  7. 7.
    T. Hida, Stationary Stochastic Processes, (Princeton 1970 ).Google Scholar
  8. 8.
    B. Simon, The P (cɸ)2 Euclidean Quantum field Theory, (Princeton).Google Scholar
  9. 9.
    J. Fröhlich, Helv. Phys. Acta 47, 265 (1974) and Adv. Math, (to appear).Google Scholar
  10. 10.
    G.C. Hegerfeldt, J.R. Klauder, Comm. Math. Phys. 16, 329 (1970).MathSciNetADSMATHCrossRefGoogle Scholar
  11. 11.
    J.R. Klauder, A Characteristic Glimpse of the Renormalization Group, (Bell Labs, preprint 1975, to appear in J. Math. Phys.).Google Scholar
  12. 12.
    L. Streit, Acta Phys. Austr. 42, 9 (1975).MathSciNetGoogle Scholar
  13. 13.
    H. Ezawa, J.R. Klauder, L.A. Shepp, Ann. Phys. (N.Y.), 88, 588 (1975).MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    J. Eachus, L. Streit, Rep. Math. Phys. 4, 161 (1973).MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    T. Hida, L. Streit (in preparation).Google Scholar
  16. 16.
    E.G. SudarshanGoogle Scholar
  17. 17.
    J.R. Klauder, L. Streit, W. Wyss, unpublished.Google Scholar
  18. 18.
    Discussions with V. Enss were very helpful in clarifying this point.Google Scholar
  19. 19.
    G.C. Hegerfeldt, Contribution to the ZiF-Symposium Dec. 75, and K. Baumann and G.C. Hegerfeldt, Is the Wick Square Infinitely Divisible ?, ZiF preprint,1976.Google Scholar
  20. 20.
    G.C. Hegerfeldt, Comm. Math. Phys. 45, 133 (1975).MathSciNetADSMATHCrossRefGoogle Scholar
  21. 21.
    K. Osterwalder and R. Seneor, The S-Matrix is Non- trivial for Weakly Coupled P(ɸ)2 Models, preprint 1975. also contributions of J.P. Eckmann and J. Dimock to Quantum Dynamics: Models and Mathematics (L.Streit, ed.), ZiF-Symposium Sept. 1975, to appear (Springer, Vienna + New York).Google Scholar
  22. 22.
    L.P. Kadanoff et al, Rev. Mod. Phys. 39, 395 (1967). F. Jegerlehner and B. Schroer, Acta Phys. Austr. Suppl. XI, (1973) has many further references.ADSCrossRefGoogle Scholar
  23. 23.
    G. Jona-Lasinio, Critical Behaviour in Terms of Probabilistic Concepts, at Int. Coll. on Math. Methods in Quantum Field Theory, Marseille, 1975. G. Jona-Lasinio, Nuov. Cim. 26B, 99 (1975).G. Jona-Lasinio, G. Gallavotti, Comm. Math. Phys. 41, 3ol (1975).Google Scholar
  24. 24.
    J.R. Klauder, Acta Phys. Austr. Suppl. VIII 227 (1971). R. Klauder in Lectures in Theoretical Physics, Vol. XIV B, W. Brittin, ed., Boulder 1973.Google Scholar
  25. 25.
    J.R. Klauder, Acta Phys. Austr. Suppl. XI, 341 (1973).Google Scholar
  26. 26.
    G. Feller, An Introduction to Probability Theory and its Applications, Vol. II, (New York 1971 ) Ch. VIII, 8.ADSGoogle Scholar
  27. 27.
    H. Leutwyler, J.R. Klauder, L. Streit, Nuov. Cim. 66A, 536 (1970).MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    F. Rohrlich, L. Streit, Nuovo Cim. 7B, 166 (1972).Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • L. Streit
    • 1
  1. 1.Fakultät für PhysikUniversität BielefeldDeutschland

Personalised recommendations