Advertisement

Sum Rules for Elastic γγ Scattering? Meson Couplings to Two Photons, and the f-P Relationship

  • P. Grassberger
Conference paper
Part of the Few-Body Systems book series (FEWBODY, volume 15/1976)

Abstract

Very general assumptions are used to derive super-convergence type sum rules for elastic γγ scattering. Among the results is a proof that tensor meson decays into two photons must involve predominantly photons with opposite helicities, and estimates for the f → γγ and ɛ → γγ widths. Since these sum rules use full (s, t, u) — crossing, we can also discuss the analytic continuation of the pomeron from {t ≤ O, s large} to {t > O, s ≤ O}. We argue that the pomeron is responsible for the apparent small deviation from ideal mixing in the tensor nonet, in pushing the f meson mass down from its “bare” nonet value, and making its coupling to other states somewhat larger.

Keywords

Pseudoscalar Meson Vector Meson Dominance Kinematic Singularity Opposite Helicity Tensor Meson 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Kogerler and P. Grassberger, CERN reprint TH. 2114 (Jan. 1976).Google Scholar
  2. 2.
    J.M. Cornwall, D.N. Levin and G. Tiktopolous, Phys. Rev. Lett. 30, 1268 (1973) and 31, 572 (E) (1973); Phys. Rev. 10, 1145 (1974) and 11, 972 (E) (1975).ADSCrossRefGoogle Scholar
  3. 3.
    C. Llewellin-Smith, in Proceedings of the 14th Scottish Universities Summer School in Physics, 1973 (eds. R.L. Crawford and R.Jennings) ( Academic Press Inc., New York 1974 ).Google Scholar
  4. 4.
    G, Wanders et al., Nuovo Cim. 63A, 108 (1969). R. Roskies, Phys. Rev. D2, 1649 (1970).MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    P. Grassberger, Nucl. Phys. B70, 141 (1974).ADSCrossRefGoogle Scholar
  6. 6.
    W. Beusch et al., Phys. Letters, 60B, 101 (1975).ADSGoogle Scholar
  7. 7.
    H. Harari, Phys. Letters, 60B, 172 (1976).ADSGoogle Scholar
  8. 8.
    R.A. Leo, A.Minguzzi and G. Soliniani, Univ. of Lecce preprint UL/IF/26–74/75 (1975).Google Scholar
  9. 9.
    P.G.O. Freund, Phys. Rev. Lett., 20, 235 (1968). H. Harari, Phys. Rev. Lett. 20, 1395 (1968).ADSCrossRefGoogle Scholar
  10. 10.
    N. Levy, P. Singer and S. Toaff, Haifa (Technion) preprint (1975).Google Scholar
  11. 11.
    D. Faiman, H.J. Lipkin and H.R. Rubinstein, Phys. Letters 59B, 269 (1975).ADSGoogle Scholar
  12. 12.
    J.L. Rosner, Phys. Reports, 11C, 189 (1974).ADSCrossRefGoogle Scholar
  13. 13.
    B. Schrempp-Otto, F.Schrempp and T. Walsh, Phys. Letters, 36B, 463 (1971).ADSGoogle Scholar
  14. 14.
    P. Roy, Phys. Rev. D9, 2631 (1974).ADSGoogle Scholar
  15. 15.
    V.M. Budnev, I.F. Ginzburg and V.G. Serbo, Nuovo Cim. Letters, 7, 13 (1974).CrossRefGoogle Scholar
  16. 16.
    A. Duane et al., Phys. Rev. Lett. 32, 425 (1974).ADSCrossRefGoogle Scholar
  17. 17.
    D. Morgan, Rutherford preprint RL — 75–133 (1975).Google Scholar
  18. 18.
    G. Schierholz and K. Sundermeyer, Nucl. Phys. B40, 125 (1972).ADSCrossRefGoogle Scholar
  19. 19.
    B.R. Mac Gregor, Nucl. Phys. B95, 53 (1975).ADSCrossRefGoogle Scholar
  20. 20.
    B. Hyams et al., Nuclear Phys. B100, 205 (1975). P. Estabrooks and A.D. Martin, Nucl. Phys. B95, 322 (1975). C.D. Froggatt and J.L. Petersen, Nucl. Phys. B91, 454 (1975).ADSGoogle Scholar
  21. 21.
    C.F. Chew and C. Rosenzweig, Phys. Lett. 58B, 93 (1975). M. Bishari, Phys. Lett. 59B, 461 (1975). C. Schmid and C.Sòrensen, Nucl. Phys. B96, 209 (1975).Google Scholar
  22. 22.
    M. Aguilar-Benitez et al., Phys. Rev. D6, 29 (1972).ADSGoogle Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • P. Grassberger
    • 1
  1. 1.Laboratoire de Physique ThéoriqueUniversité de NiceFrance

Personalised recommendations