Renormalization of Nonabelian Gauge Fields

  • W. Kummer
Conference paper
Part of the Few-Body Systems book series (FEWBODY, volume 15/1976)


Since about 1974 gauge-theories become something like a “party-line” in theoretical elementary particle physics. This means that a wide-spread belief links most of our basic ideas with the concept of a local gauge-invariance of nature, although no definite proof exists so far that gauge fields are really there — except in quantum electrodynamics (and gravity?) Admittedly the amount of supporting facts is quite impressive. It ranges from a possible unification of weak and electromagnetic interactions in such a scheme [1] to a number of qualitative, but rather convincing arguments in the field of strong interaction physics, if the latter is based on a field theory of gluon gauge fields. We cite “asymptotic freedom”, which could explain the almost perfect scaling of deep electroproduction [2], the enhancement of ΔI = 1/2 - amplitudes in weak nonleptonic decays [3] and, as an example for a more theoretical result, the persistent ultraviolet divergence of radiative corrections to all orders in the coupling of a gluon-field to matter [4].


Vector Field Scalar Field Gauge Field Internal Symmetry Auxiliary Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967);CrossRefGoogle Scholar
  2. A. Salam, Elementary Particle Physics, N.Svartholm ed. ( Stockholm 1968 ), p. 367.Google Scholar
  3. 2.
    D.J. Gross and F. Wilczek, Phys. Rev. Letters 30, 1343 (1973), Phys. Rev. D8, 3633 (1973), D9, 980 (1974);ADSGoogle Scholar
  4. N. D. Politzer, Phys. Rev. Lett. 30, 1346 (1973),Google Scholar
  5. 3.
    M.K. Gaillard and B.W. Lee, Phys. Rev. Lett. 33, 108 (1974);ADSCrossRefGoogle Scholar
  6. G. Altarelli and L. Maiani, Phys. Lett. 52:, 351 (1974).Google Scholar
  7. 4.
    W. Kainz, W. Kummer and M. Schweda, Nucl. Phys. B79, 484 (1974).ADSCrossRefGoogle Scholar
  8. 5.
    B.S. de Witt, Phys. Rev. 162, 1195 (1967); L.D. Fadeev and V.N. Popov, Phys. Lett. 25B, 29 (1967).Google Scholar
  9. 6.
    W. Kummer, Acta Phys. Austr. 1A, 149 (1961).Google Scholar
  10. 7.
    R.L. Arnowitt and S.I. Fickler, Phys. Rev. 127, 1821 (1962); J. Schwinger, Phys. Rev. 130, 402 (1963); Y.P. Yao, Journ. of Math. Phys. 5, 1319 (1964); E.S. Fradkin and I.V. Tyutin, Phys. Rev. D2, 2841 (1970).Google Scholar
  11. 8.
    W. Kummer, Acta Phys. Austr. 41, 315 (1975).Google Scholar
  12. 9.
    W. Konetschny and W. Kummer, Nucl. Phys. B100, 106 (1975).ADSCrossRefGoogle Scholar
  13. 10.
    W. Konetschny and W. Kummer, “Unitarity in the Ghost-free axial gauge”, prep. TU Vienna, Jan. 1976.Google Scholar
  14. 11.
    The extension to more gauge-fields with different couplings is straightforward.Google Scholar
  15. 12.
    C.N. Yang and R.L. Mills, Phys. Rev. 96, 191 (1954)MathSciNetADSCrossRefGoogle Scholar
  16. 13.
    B.S. de Witt, Phys. Rev. 162, 1195 (1967).MATHCrossRefGoogle Scholar
  17. 14.
    Our metric is g00 = -g11 = -g22 = -g33 = -1.Google Scholar
  18. 15.
    P. Higgs, Physics 12, 132 (1966); T.W.B. Kibble, Phys. Rev. 155, 1554 (1967).Google Scholar
  19. 16.
    In the latter case in each order of perturbation theory the soft-photon technique can be used along the lines of ref.[17]. Now it seems that this can be extended to nonabelian gauge-theories as well [18] by simply averaging over the internal symmetry of the nonabelian vector fields.Google Scholar
  20. 17.
    F.Bloch and A. Nordsieck, Phys. Rev. 52, 54 (1937).ADSCrossRefGoogle Scholar
  21. 18.
    Y.P. Yao “On the infrared problem in nonabelian gauge theories”, Michigan prep. UMHE 75-38; Th. Appelquist, J. Carazzone, H. Kluberg - Stern and M. Roth “Infrared finiteness in Yang-Mills theories” FNAL Pub 76/16-THY.Google Scholar
  22. 19.
    R.P. Feynman, Rev. Mod. Phys. 20, 367 (1948).MathSciNetADSCrossRefGoogle Scholar
  23. 20.
    Cf.e.g. F.A. Berezin, The method of second quantization, Academic Press, New York, London 1966.Google Scholar
  24. 21.
    A field-independent factor is irrelevant. It cancels in (4.4).Google Scholar
  25. 22.
    For simplicity we write it without symmetry break-ing, because this is irrelevant for the following argument. The propagators for the spontaneously broken case are very similar, cf. (9.6) below.Google Scholar
  26. 23.
    S. Weinberg, Phys. Rev, 118, 838 (1960).MathSciNetADSMATHCrossRefGoogle Scholar
  27. 24.
    G. t’Hooft and M. Veltman, Nucl. Phys. B44, 189 (1972).MathSciNetADSCrossRefGoogle Scholar
  28. 25.
    N.N. Bogoliubov and O.S. Parasiuk, Acta Math. 97, 227 (1957); K. Hepp, Commun. Math. Phys. 1, 95 (1965).Google Scholar
  29. 26.
    A. Slavnov, Theor. and Math. Phys. 10, 99 (1972); J.C. Taylor, Nucl. Phys. B33, 436 (1971).Google Scholar
  30. 27.
    G. Jona - Lasinio, Nuovo Cim. 3_4, 1790 (1964).Google Scholar
  31. 28.
    B.W. Lee, Phys. Lett. 46B, 214 (1973).Google Scholar
  32. 29.
    C. Becchi, A. Rouet and R. Stora, Phys. Lett. 52B, 344 (1974).Google Scholar
  33. 30.
    J. Zinn-Justin, Lectures at the International Summer Institute for Theoretical Physics, Bonn 1974.Google Scholar
  34. 31.
    Y. Nambu, Phys. Lett. 26B, 626 (1966).Google Scholar
  35. 32.
    For an excellent review of the whole subject of the renormalization of gauge - fields cf. ref. [33].Google Scholar
  36. 33.
    G. Costa and M. Tonin, Rivista del Nuovo Cim. 5, 29 (1975).MathSciNetADSCrossRefGoogle Scholar
  37. 34.
    ei refers to the ordinary fields, ea to the C-field in the ghost-free axial gauge.Google Scholar
  38. 35.
    S. Weinberg, Phys. Rev. Lett. 2J7, 1688 (1970).Google Scholar
  39. 36.
    In the so called “back-ground-field” method [37] one does not introduce external sources as in (4.2) and (4.3). Instead, the field is replaced by a quantum field ϕi (Q) plus a classical field ϕi (c). Despite a gauge-breaking term for ϕi (Q) the Green’s function (in terms of external ϕi (c) -legs) may retain a gauge-invariance. A short and clear introduction into the complicated literature can be found in [38].Google Scholar
  40. 37.
    B.S. DeWitt, Phys. Rev. 160, 1113 (1967), 162, 1195 (1967), 162, 1239 (1967); J. Honerkamp, Nucl. Phys. B48, 269 (1972); R. Kallosh, Nucl. Phys. B7J3, 293 (1974).Google Scholar
  41. 38.
    M.T. Grisaru, P. van Nieuwenhuizen and C.C. Wu, “Background field method vs. normal field theory in examples…”, Brandeis prep. 1975.Google Scholar
  42. 39.
    The propagator (4.24) in Feynman-graphs with no external C-legs leads to expressions homogeneous in nµ!Google Scholar
  43. 40.
    L.D. Landau, Nucl. Phys. 13, 181 (1959), R.J. Eden, P.V. Landshoff, D.I. Olive and J.C.Polkinghorne, The Analytic S-matrix, Cambridge Univ. press 1966.Google Scholar
  44. 41.
    A more elaborate argument can be found in ref. [lol. It is based on Veltman’s version of the cutting rule [42].Google Scholar
  45. 42.
    R.E. Cutkosky, Rev. Mod. Phys. 3J3* 448 (1961); M.Veltman, Physica 29, 186 (1963).MathSciNetCrossRefGoogle Scholar
  46. 43.
    G. tl Hooft, Nucl. Phys. B38, 173 (1971) and B35, 161 (1971); B.W. Lee and J. Zinn - Justin, Phys. Rev. D5, 3137 (1972).Google Scholar
  47. 44.
    Cf. the second and third ref. [2] and J.M. Cornwall, Phys. Rev. DlO, 500 (1974).Google Scholar
  48. 45.
    Cf. eq. (4.27).Google Scholar
  49. 46.
    Cf. Cornwall, ref. (44), end of the “Appendix”, and ref. (4).Google Scholar
  50. 47.
    J. Frenkel, A class of ghost-free nonabelian gauge theories, prep. Sao Paulo Univ., IFUSP/P-71, Dec. 1975.Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • W. Kummer
    • 1
  1. 1.Institut für Theoretische PhysikTechnische Universität WienAustria

Personalised recommendations