Advertisement

Firing Process

  • Wayne Ernest Brownell
Part of the Applied Mineralogy book series (MINERALOGY, volume 9)

Abstract

The object of firing a clay product is to convert a fairly loosely compacted blend of various minerals into a strong, hard, and stable product. In the path of achieving this conversion, many chemical and physical processes come into play. The properties of the final product such as strength, porosity, stability against the action of moisture and chemicals, thermal expansion, thermal conductivity, and hardness are determined by the kind and amounts of the various phases resulting from the firing process.

Keywords

Thermal Gravimetric Analysis Burner System Tunnel Kiln Black Core Mullite Crystal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brindley, G. W., and M. Nakahira: Kinetics of dehydroxylation of kaolinite and halloysite. J. Am. Ceram. Soc. 40, 346–50 (1957).CrossRefGoogle Scholar
  2. 2.
    Brindley, G. W., and M. Nakahira: The kaolinite-mullite reaction series: II, Metakaolin. J. Am. Ceram. Soc. 42, 314–18 (1959).CrossRefGoogle Scholar
  3. 3.
    Brindley, G. W., and H. A. McKinstry: The kaolinite-mullite reaction series: IV, The coordination of aluminum. J. Am. Ceram. Soc. 44, 506–7 (1961).CrossRefGoogle Scholar
  4. 4.
    MacKenzie, K. J. D.: Infrared kinetic study of high temperature reactions of synthetic kaolinite. J. Am. Ceram. Soc. 52, 635–37 (1969).CrossRefGoogle Scholar
  5. 5.
    Roy, R, D. M. Roy, and E. E. Francis: New data on thermal decomposition of kaolinite and halloysite. J. Am. Ceram. Soc. 38, 198–205 (1955).CrossRefGoogle Scholar
  6. 6.
    Brindley, G. W., and M. Nakahira: The kaolinite-mullite reaction series: III, The high-temperature phases. J. Am. Ceram. Soc. 42, 319–24 (1959).CrossRefGoogle Scholar
  7. 7.
    MacKenzie, K. J. D.: Infrared frequency calculations for ideal mullite (3Al2O3.2SiO2). J. Am. Ceram. Soc. 55, 68–71 (1972).CrossRefGoogle Scholar
  8. 8.
    Comeforo, J. E., R. B. Fischer, and W. F. Bradley: Mullitization of kaolinite. J. Am. Ceram. Soc. 31, 254–59 (1948).CrossRefGoogle Scholar
  9. 9.
    Comer, J. J.: Electron microscope studies of mullite development in fired kaolinites. J. Am. Ceram. Soc. 43, 379–84 (1960).CrossRefGoogle Scholar
  10. 10.
    Glass, H. D.: High-temperature phases from kaolinite and halloysite. Am. Min. 39, 193–207 (1954).Google Scholar
  11. 11.
    Verduch, A. G.: Kinetics of cristobalite formation from silicic acid. J. Am. Ceram. Soc. 41, 427–32 (1958).CrossRefGoogle Scholar
  12. 12.
    Phillips, G. C., Jr.: Behavior of Illite on Heating, M.S. Thesis, New York State College of Ceramics, Alfred University, June 1964.Google Scholar
  13. 13.
    Tatem, W. A.: The Melting of Illite, M.S. Thesis, New York State College of Ceramics, Alfred University, June 1960.Google Scholar
  14. 14.
    Brindley, G. W., ed.: X-Ray Identification and Crystal Structures of Clay Minerals. London: The Mineralogical Society. 1951.Google Scholar
  15. 15.
    Kellogg, Alan E.: Changes in Prochlorite on Heating to 1000°C, B.S. Thesis, New York State College of Ceramics, Alfred University, May 1973.Google Scholar
  16. 16.
    Segnit, E. R., and A. E. Holland: Formation of cordierite from clinochlore and kaolinite. J. Austral. Ceram. Soc. 7, 43–46 (1971).Google Scholar
  17. 17.
    Tauber, E., and H. J. Pepplinkhouse: Ceramic properties of pyrophyllite from pambula, New South Wales. J. Austral. Ceram. Soc. 8, 62–64 (1972).Google Scholar
  18. 18.
    Hedges, P. E.: Crystalline and glassy phases in commercially fired brick. Am. Ceram. Soc. Bull. 40, 371–77 (1961).Google Scholar
  19. 19.
    Pauling, L.: Structure of complex ionic crystals. J. Am. Chem. Soc. 51, 1010–26 (1929).CrossRefGoogle Scholar
  20. 20.
    Brownell, W. E.: Subsolidus relations between mullite and iron oxide. J. Am. Ceram. Soc. 41, 226–30 (1958).CrossRefGoogle Scholar
  21. 21.
    Jander, W.: Reaction in the solid state at high temperature. I. Rate of reaction for an endothermic change. Z. anorg. allg. Chem. 163, 1–30 (1927).Google Scholar
  22. 22.
    Jander, W.: Reaction in the solid state at high temperature. II. Reaction velocities of exothermic reactions. Z. anorg. allg. Chem. 166, 31–52 (1927).Google Scholar
  23. 23.
    Ginstling, A. M., and B. I. Brounshtein: Diffusion kinetics of reactions in spherical particles. J. Appl. Chem. (U.S.S.R.), 23, 1249 (1950).Google Scholar
  24. 24.
    Carter, R. E.: Kinetics model for solid-state reactions. J. Chem. Phys. 34, 201015 (1961), 35, 1137–38 (1961).CrossRefGoogle Scholar
  25. 25.
    Hild, K., and G. Troemel: Die Reaktion von Calciumoxyd und Kieselsäure im festen Zustand. Z. anorg. allg. Chem. 215, 333–44 (1933).Google Scholar
  26. 26.
    Jander, W., and E. Hoffmann: Reactions in the solid state at high temperatures. XI. Reaction between calcium oxyde and silicon dioxide. Z. anorg. allg. Chem. 218, 211–23 (1934).Google Scholar
  27. 27.
    Brownell, W. E.: Crystalline phases in fired shale products. J. Am. Ceram. Soc. 33, 309–13 (1950).CrossRefGoogle Scholar
  28. 28.
    Brownell, W. E.: Reactions between alkaline-earth sulfates and cristobalite. J. Am. Ceram. Soc. 46, 125–28 (1963).CrossRefGoogle Scholar
  29. 29.
    Stern, K. H., and E. L. Weise: High Temperature Properties and Decomposition of Inorganic Salts. I. Sulfates, NSRDS-U.S. Nat. Bur. Stds., No. 7, October 1966.Google Scholar
  30. 30.
    Briner, E.: Calcul des énergies libres et des constantes d’équilibre des réactions de décomposition du sulfate de calcium seul ou en présence de silice. Helv. Chim. Acta 28, 50–59 (1945).CrossRefGoogle Scholar
  31. 31.
    Jang, S. D.: Solid-State Reactions Between Mullite and Alkaline-Earth Sulfates. M.S. Thesis, New York State College of Ceramics, Alfred University, June 1964.Google Scholar
  32. 32.
    North American Combustion Handbook. Cleveland, Ohio: The North American Manufacturing Company. 1965.Google Scholar
  33. 33.
    Brownell, W. E.: Black coring in structural clay products. J. Am. Ceram. Soc. 40, 179–87 (1957).CrossRefGoogle Scholar
  34. 34.
    Schoenlaub, R. A., W. Troyer, and K. 1-Ioekstra: Burnout rates on a shale body. Am. Ceram. Soc. Bull. 45, 257–59 (1966).Google Scholar
  35. 35.
    Osman, M. A., S. M. Ehmke, and J. F. Skelly: Core burnout in brick making. Am. Ceram. Soc. Bull. 49, 193–200 (1970).Google Scholar
  36. 36.
    Houseman, J. E., and C. J. Koenig: Influence of kiln atmospheres in firing structural clay products: II, Color development and burnout. J. Am. Ceram. Soc. 54, 82–89 (1971).CrossRefGoogle Scholar
  37. 37.
    Brownell, W. E.: Efflorescence resulting from pyrite in clay raw materials. J. Am. Ceram. Soc. 41, 261–66 (1958).CrossRefGoogle Scholar
  38. 38.
    Blachère, J.: Desulfurization of pyrite. J. Am. Ceram. Soc. 49,590–93 (1966).Google Scholar
  39. 39.
    Lovejoy, R. J., J. H. Colwell, and G. D. Halsey: Infrared spectrum and thermodynamic properties of gaseous sulfur trioxide. J. Chem. Phys. 36, 612–17 (1962).CrossRefGoogle Scholar
  40. 40.
    Mellor, J. W.: A Comprehensive Treatise on Inorganic and Theoretical Chemistry, Vol. 10. New York: Longmans, Green and Co. 1930.Google Scholar
  41. 41.
    Remmey, F. B.: Kiln car top construction. Am. Ceram. Soc. Bull. 49, 266–68 (1970).Google Scholar
  42. 42.
    Marshall, R. W.: Forced draft firing for beehive periodic kilns. Am. Ceram. Soc_ Bull. 49, 518–21 (1970).Google Scholar
  43. 43.
    Sakol, S. L., and I. S. Shah: Removal of sulfur dioxide from clay kiln exhaust gases. Am. Ceram. Soc. Bull. 49, 317–19 (1970).Google Scholar
  44. 44.
    Hunter, O., Jr., and W. E. Brownell: Thermal expansion and elastic properties of two-phase ceramic bodies. J. Am. Ceram. Soc. 50, 19–22 (1967).CrossRefGoogle Scholar
  45. 45.
    Lachman, J. M., and J. O. Everhart: Development of safe cooling schedules for structural clay products. J. Am. Ceram. Soc. 49, 30–38 (1956).CrossRefGoogle Scholar
  46. 46.
    Edwards, J.: Thermal acoustical analyzer helps solve cooling problems. Brick and Clay Rec. 165, 27–29 (1974).Google Scholar
  47. 47.
    Hasselman, D. P. H.: Thermal Stress Crack Stability and Propagation in Severe Thermal Environments. Ceramics in Severe Environments, W. W. Kriegel and H. Palmour, III, eds. New York: Plenum Press. 1971.Google Scholar

Copyright information

© Springer-Verlag/Wien 1976

Authors and Affiliations

  • Wayne Ernest Brownell
    • 1
  1. 1.New York State College of Ceramics at Alfred UniversityAlfredUSA

Personalised recommendations