Skip to main content

Forming of Structural Clay Products

  • Chapter
  • 179 Accesses

Part of the book series: Applied Mineralogy ((MINERALOGY,volume 9))

Abstract

After preparation of the raw materials with regard to composition and particle size, structural clay products are usually formed in the plastic state. This means that water is added to the raw materials to produce the proper consistency and wet strength. In this process peculiar things happen that create the really unique plasticity of clays. We find that as water is added to dry clay there is as much or more of a change in the properties of the water as there appears to be in the alteration of the clay into a plastic, formable mass. For this reason it is necessary for us to pause here to look at the structure and properties of water before discussing the interactions between clay and water in an attempt to explain plasticity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bernal, J. D., and R. H. Fowler: A theory of water and ionic solution with particular reference to hydrogen and hydroxyl ions. J. Chem. Phys. 1, 515–48 (1933).

    Article  Google Scholar 

  2. Forslind, E.: A theory of water. Royal Inst. Cement and Mortar, Bull. No. 16, Stockholm, 1951.

    Google Scholar 

  3. Linnett, J. W., and A. J. Poe: Directed valency in elements of the first short period. Trans. Faraday Soc. 47, 1033–44 (1951).

    Article  Google Scholar 

  4. Runnels, L. K.: Ice. Sci. Am. 215, 118–26 (1966).

    Google Scholar 

  5. Morgan, J., and B. E. Warren: X-ray analysis of the structure of water. J. Chem. Phys. 6, 666–73 (1968).

    Article  Google Scholar 

  6. Hunt, J. P.: Metal Ions in Aqueous Solution. New York: W. A. Benjamin, Inc. 1963.

    Google Scholar 

  7. Weyl, W. A.: Surface structure of water and some of its physical and chemical manifestations. J. Colloid Sci. 6, 389–405 (1951).

    Article  Google Scholar 

  8. Hendricks, S. B., and M. F. Jefferson: Structure of kaolin and talc-pyrophyllite hydrates and their bearing on water sorption of clays. Am. Min. 23, 863–75 (1938).

    Google Scholar 

  9. Alexander, L. T., and T. M. Shaw: Determination of ice-water relationships by measurement of dielectric constant changes. J. Phys. Chem. 41, 955–60 (1937).

    Article  Google Scholar 

  10. Bodman, G. B., and P. R. Day: Freezing points of a group of California soils and their extracted clays. Soil Sci. 55, 225–46 (1943).

    Article  Google Scholar 

  11. Grimshaw, R. W.: The Chemistry and Physics of Clays..., 4th Ed. New York: Wiley-I nterscience. 1971.

    Google Scholar 

  12. Gouy, G.: Sur la constitution de la charge électrique âla surface d’un électrolyte. Ann. Phys. (Paris) 4, 457–68 (1910).

    Google Scholar 

  13. Lawrence, W. G.: Theory of ion exchange and development of charge in kaolinitewater systems. J. Am. Ceram. Soc. 41, 136–40 (1958).

    Article  Google Scholar 

  14. van Olphen, H.: An Introduction to Clay Colloid Chemistry. New York: Inter-science Publishers. 1963.

    Google Scholar 

  15. Button, D. D.: The Effect of Temperature on the Charge of Kaolinite Particles in H2O Suspensions, Ph. D. Diss., N.Y. State College of Ceramics, Alfred Univ., April, 1963.

    Google Scholar 

  16. Button, D. D., and W. G. Lawrence: Effect of temperature on the charge of kaolinite particles in water. J. Am. Ceram. Soc. 47, 503–9 (1964).

    Article  Google Scholar 

  17. Grim, R. E.: Clay Mineralogy, 2nd Ed. New York: McGraw-Hill. 1968.

    Google Scholar 

  18. Mackenzie, R. C.: Density of water sorbed on montmorillonite. Nature 181, 334 (1958).

    Article  Google Scholar 

  19. Macey, H. H.: Clay-water relationships. Proc. Phys. Soc. (London) 52, 625–56 (1940).

    Article  Google Scholar 

  20. Grim, R. E.: Some fundamental factors influencing the properties of soil materials. Proc. 2nd Intern. Congr. Soil Mech. 3, 8–12 (1948).

    Google Scholar 

  21. Kingery, W. D., and J. Francl: Fundamental study of clay: XIII. Drying behavior and plastic properties. J. Am. Ceram. Soc. 37, 596–602 (1954).

    Article  Google Scholar 

  22. Lawrence, W. G.: Plastic Properties, in Clay-Water Systems, W. G. Lawrence, ed. Alfred, N.Y.: Alfred University. 1965.

    Google Scholar 

  23. West, R.: The Plastic Behavior of Some Clays, in Clay-Water Systems, W. G. Lawrence, ed. Alfred, N.Y.: Alfred University. 1965.

    Google Scholar 

  24. Macey, H. H.: Experiments on plasticity. Trans. Brit. Ceram. Soc. 43, 5–28 (1944).

    Google Scholar 

  25. Bloor, E. C.: Plasticity: a critical survey. Trans. Brit. Ceram. Soc. 56, 423–81 (1957).

    Google Scholar 

  26. Bloor, E. C.: Plasticity in theory and practice. Trans. Brit. Ceram. Soc. 58, 429–53 (1959).

    Google Scholar 

  27. Buessem, W. R., and B. Nagy: The Mechanism of the Deformation of Clay. Nat. Acad. Sci: Nat. Res. Coun. Pub. 327, Clay and Clay Minerals, 1954, pp 480–91.

    Google Scholar 

  28. Kellogg, B. C., and T. J. Sonneville: Rheological Properties of Plastic Clay and Slip with Respect to Flocculation and Deflocculation, B. S. Thesis, N.Y. State College of Ceramics, Alfred University, May, 1974.

    Google Scholar 

  29. Astbury, N. F.: A plasticity model. Trans. Brit. Ceram. Soc. 62, 1–18 (1962).

    Google Scholar 

  30. Pyle, R. E., and P. R. Jones: The effects of wetting agents on the physical properties of clay bodies. Am. Ceram. Soc. Bull. 31, 233–36 (1952).

    Google Scholar 

  31. Robinson, G. C., and J. J. Keilen: The role of water in extrusion and its modification by a surface-active chemical. Am. Ceram. Soc. Bull. 36, 422–30 (1957).

    Google Scholar 

  32. Hogue, C. H.: Evaluation and effects of additives in brick making. Am. Ceram. Soc. Bull. 49, 1052–56 (1970).

    Google Scholar 

  33. Hodgkinson, H. R.: The shaping and preparation of clay in Germany. J. Brit. Ceram. Soc. 7, 8–12 (1970).

    Google Scholar 

  34. Tatnall, R. F.: Globe Brick Co. Achieves automatic pugging. Ceram. Age 78, 27–30 (1962).

    Google Scholar 

  35. Connor, J. H.: Mechanism of pugging processes. Am. Ceram. Soc. Bull. 45, 183–86 (1966).

    Google Scholar 

  36. Blume, A. J.: Extrusion die design. Am. Ceram. Soc. Bull. 51, 174 (1972).

    Google Scholar 

  37. Hodgkinson, H. R.: The mechanics of extrusion. Claycraft 36, 42–48 (1962).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Springer-Verlag/Wien

About this chapter

Cite this chapter

Brownell, W.E. (1976). Forming of Structural Clay Products. In: Structural Clay Products. Applied Mineralogy, vol 9. Springer, Vienna. https://doi.org/10.1007/978-3-7091-8449-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-8449-3_4

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-8451-6

  • Online ISBN: 978-3-7091-8449-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics