Quantum Electrodynamics in Laser Fields

  • H. Mitter
Part of the Acta Physica Austriaca Supplementum XIV book series (FEWBODY, volume 14/1975)


The theory to be described here is a special case of quantum electrodynamics (QED) in presence of external (i.e. classical) fields. We shall therefore begin with a short review of this more general topic. The problem of interest is here the influence of given, classical electromagnetic fields on QED. These fields are supposed to be strong, i.e. the coupling of charged particles to the fields is not to be considered as a small perturbation. Some motivation for studying such a theory can be derived from the following reasoning. It is known that a formal solution of QED can be formulated in terms of the free Green’s function in presence of an arbitrary external field. Any approximation to this function implies a corresponding one for QED. The study of special external field problems might give some insight in the machinery, which could help in the general case. To learn what happens if an expansion parameter is no longer small should be easier in special cases than in general (nobody knows really how to sum perturbation theory for a quantum field theory with interaction).


External Field Dirac Equation Laser Field Vacuum Polarization Anomalous Magnetic Moment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. V. Volkov, Zs. f. Phys. 94 (1935), 250.CrossRefMATHADSGoogle Scholar
  2. 2.
    Ya. B. Zeldovich, JETP 51 (1966), 1492.Google Scholar
  3. 3.
    W. Becker, H. Mitter, J. Phys. A7 (1974), 1266.ADSGoogle Scholar
  4. 4.
    W. Becker, J. Phys. A8 (1975), 160.ADSGoogle Scholar
  5. 5.
    P. J. Redmond, Journ. Math. Phys. 6 (1965), 1163.CrossRefMATHADSMathSciNetGoogle Scholar
  6. 6.
    V. P. Oleinik, Ukr. Fiz. Zh. 13 (1968), 1205. ibid. 14 (1969), 2076.Google Scholar
  7. 7.
    V. P. Oleinik, JETP 61 (1971), 27.MathSciNetGoogle Scholar
  8. 8.
    B. Beers, H. H. Nickle, J. Math. Phys. 13 (1972)Google Scholar
  9. 9.
    J. Schwinger, Phys. Rev. 82 (1951), 664.CrossRefMATHADSMathSciNetGoogle Scholar
  10. 10.
    V. J. Ritus, Ann. Phys. (N.Y.) 69 (1972), 555.CrossRefADSGoogle Scholar
  11. 11.
    W. Becker, H. Mitter, to be published.Google Scholar
  12. 12.
    H. Reiss, J. H. Eberly, Phys. Rev. 151 (1966), 1058.Google Scholar
  13. 13.
    W. Dittrich, Phys. Rev. D6 (1972), 2094, 2104.Google Scholar
  14. 14.
    L. S. Brown, T. W. B. Kibble, Phys. Rev. 133 (1964), A705.CrossRefADSGoogle Scholar
  15. 15.
    N. B. Narozhnyi, A.I. Nikishow, V. J. Ritus, JETP 47 (1964), 930.Google Scholar
  16. 16.
    R. Neville, F. Rohrlich, Phys. Rev. D3 (1970), 1692.Google Scholar
  17. 17.
    W. Becker, V. Koch, H. Mitter, to be published.Google Scholar
  18. 18.
    Reiss, Phys. Rev. Lett. 26 (1971) 1072. Phys. Rev. D6 (1972), 385.Google Scholar
  19. 19.
    M. M. Denisow, M. V. Fedorow, JETP 53 (1967), 1340.Google Scholar
  20. 20.
    F. Ehlotzky, Acta phys. Austr. 31 (1970), 18, 31; Nuovo Cim. 69B (1970), Nuovo Cim. 69B (1970).Google Scholar
  21. 21.
    V. P. Yakovlew, JETP 49 (1966), 318.Google Scholar
  22. 22.
    V. P. Oleinik, JETP 53 (1967), 1997.Google Scholar
  23. 23.
    V. P. Oleinik, JETP 52 (1967), 1049.Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • H. Mitter
    • 1
  1. 1.Institut für Theoretische PhysikUniversität TübingenGermany

Personalised recommendations