Advertisement

Photon Hadron Interaction in the Resonance Region

  • H. Rollnik
Conference paper
Part of the Acta Physica Austriaca Supplementum XIV book series (FEWBODY, volume 14/1975)

Abstract

In these lectures I shall describe the progress of our understanding of the photon hadron interaction in the resonance region. I will address myself to the fundamental properties of the electromagnetic hadron current and its behaviour under symmetries as well as to a detailed description of photon couplings of hadronic states. The progress to date is based on an impressive accumulation of experimental information about photon hadron processes and its phenomenological interpretation and has led to a remarkable improvement of our insight in the electromagnetic structures of hadrons.

Keywords

Decay Width Quark Model Resonance Region Helicity Amplitude Real Photon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. D. B. Collins and E. J. Squires, Springer Tracts in Modern Physics, Vol. 45 (1968).Google Scholar
  2. 2.
    V. de Alfaro et al., Currents in Hadron Physics, North Holland 1973.Google Scholar
  3. 3.
    J. D. Bjorken and S. D. Drell, Relativistic Quantum Mechanics.Google Scholar
  4. 4.
    In preparing the following considerations we made ample use of the clarifying papers by H. Osborn, especially Nuclear Physics B80 (1974), 90, where also reference to earlier work on light cone formulation can be found.Google Scholar
  5. 5.
    See e.g. J. Weyers, Constituent Quarks and Current Quarks, Louvain Summer School 1973.Google Scholar
  6. 7.
    H.J. Melosh, Cal. Tec. Ph. D Thesis (1973) unpublishedGoogle Scholar
  7. H. J. Melosh, Phys. Rev. D9 (1974) 1095. See also ref. 5.Google Scholar
  8. 8.
    H. Osborn, Nuclear Physics B38 (1972) 429.CrossRefGoogle Scholar
  9. 10.
    It plays an important role in applications of current algebra especially in connection with the CabibboRadicati sum rule (N. Cabibbo and L.A. Radicati, Phys. Letters 19 (1966), 697) and the analysis of magnetic moments in SU(6)w (R. Dashen and M. Gell-Mann in Proc. of the 3rd Coral Gables Conf. on Symmetry Principles at High Energies 1968 ).Google Scholar
  10. 11.
    For a systematic analysis in the frame of dispersion theory cp. A Donnachie and G. Shaw Phys. Rev. D5, (1972) 1117.Google Scholar
  11. 12.
    W. Bayer et al., Physics Letters (to be published).Google Scholar
  12. 13.
    W. Pfeil and D. Schwela, Nucl. Phys. B 45 (1972) 379.CrossRefADSGoogle Scholar
  13. 14.
    Berkeley-Caltec Collaboration, C.A. Heusch et al.Google Scholar
  14. 15.
    For a more detailed review about an exotic electromagnetic current see A. Donnachie, Springer Tracts in Modern Physics 63 (72) 121.Google Scholar
  15. 17.
    It was initiated by the observation of A. I. Sanda and G. Shaw (Phys. Rev. Lett. 24, (1970)1310) that the photoproduction of Tr -mesons off neutrons did not fit easily in the accepted dispersion theoretic scheme.Google Scholar
  16. 18.
    For a review see A. Pais, Phys. Rev. D5, 1170 (72).Google Scholar
  17. 19.
    K. H. Watson, Phys. Rev. 95, 228 (1954). This theorem is based on unitarity and time reversal invariance which we now assume to hold.Google Scholar
  18. 21.
    G. Shaw, Daresbury Study Weekend, July 1973, DL/R32.Google Scholar
  19. 22.
    R.J. Blin-Stoyle, Phys. Rev. Lett. 23, (1969) 535.CrossRefADSGoogle Scholar
  20. 23.
    G. Wittwer et al., Physics Letters 30B (69) 634.Google Scholar
  21. 24.
    S.S. Hanna et al., Phys. Rev. 168 (1968) 1169.Google Scholar
  22. 25.
    P. Hinterberger et al., Bonn ISKP-Preprint (1975). The author thanks Dr. Hinterberger for informing him about this iso-tensor test.Google Scholar
  23. 26.
    This notation has been introduced by L.A. Copley, G. Karl, and E. Obryk, Nucl. Phys. B13, 303 (69). See also the mini review in Particle Data Group Phys. Letters 50B, (1974) 121.Google Scholar
  24. 27.
    S. P. de Alwis and J. Stern, Nucl. Phys. B77, 509 (1974).Google Scholar
  25. 28.
    R.H. Dalitz and D.G. Sutherland, Phys. Rev. 146, (1966) 1180.Google Scholar
  26. 29.
    W. Pfeil, Dissertation Bonn (1968) (unpublished)Google Scholar
  27. Y.T. Kim, Diploma Thesis Bonn (1969) (unpublished) Cp also Ref. 30.Google Scholar
  28. 30.
    H. Rollnik, Photoproduction of Pseudoscalar Mesons in Methods of Subnuclear Physics, Vol.Google Scholar
  29. 31.
    R. G. Moorhouse, H. Oberlack and A.H. Rosenfeld, Phys. Rev. D9, (1974) 1.ADSGoogle Scholar
  30. 32.
    P. Noelle, W. Pfeil and D. Schwela, Nucl. Phys. B26 (1971) 461CrossRefADSGoogle Scholar
  31. P. Noelle, Diploma Thesis Bonn PI-2–92 (1971) (unpublished) (N).Google Scholar
  32. 33.
    F.A. Berends and D.L. Weaver, Nucl. Phys. B30, (1971) 575 (BW)Google Scholar
  33. F.A. Berends and A. Donnachie, Nucl. Phys. B84 (1975) 342 (BD).Google Scholar
  34. 34.
    Yu. M. Alekhsandrow et al., Sov. J. Nucl. Phys. 12 (1971) 416Google Scholar
  35. Yu. M. Alekhsandrow et al., Nucl. Phys. B45 (72), 589.Google Scholar
  36. 35.
    J. R. Carter et al., Nucl. Phys. B58, (73) 378.Google Scholar
  37. 36.
    G.F. Chew and F. E. Low, Phys. Rev. 101, 1571 (1956); more detailed discussions of the Chew-Low Theory can be found in ref. 30.Google Scholar
  38. 37.
    W. Pfeil, H. Rollnik, and S. Stankowski, Nucl. Phys. B73 (1974) 166.CrossRefADSGoogle Scholar
  39. 38.
    C. Becchi and G. Morpurgo, Phys. Letters 17, (1965) 352.CrossRefADSGoogle Scholar
  40. 39.
    R. H. Dalitz, Lectures at the Grenoble Summer School (1965).Google Scholar
  41. 40.
    In our normalisation (2) the dλ are dimensionless quantities thus the mass factors in (61) are appropriate.Google Scholar
  42. 41.
    For a compilation, see Particle Data Group, Phys. Lett., 39B (72).Google Scholar
  43. 42.
    Complex residues of this kind have been considered e.g. by J.S. Ball et al., Phys. Rev. D7, 2789 (1973). The numbers quoted in the text have been determined independently. I am grateful to Dr. W. Pfeil and H. Schneider for their assistance.Google Scholar
  44. 43.
    G. Calucci, L. Fonda, and G. C. Ghirardi, Phys. Rev. 166 (68) 1719Google Scholar
  45. L. Fonda, G. C. Ghirardi, and G.L. Shaw, Phys. Rev. D8 (73) 353.Google Scholar
  46. 44.
    H.F. Jones and M.D. Scadron, ICTP/72/5.Google Scholar
  47. 45.
    F.J.Gilman and I. Karliner, SLAC-PUB-1382 (1974).Google Scholar
  48. 46.
    R.L. Walker, Phys. Rev. 182, (1969) 1729Google Scholar
  49. W.J. Metcalf and R.J. Walker, Nucl. Phys. B76, (1974) 253.CrossRefADSGoogle Scholar
  50. 47.
    R.G.Moorhouse and H. Oberlack, Phys. Lett. 43B, 44 (73)Google Scholar
  51. R.G. Moorhouse, H. Oberlack, and A.H. Rosenfeld, Phys. Rev. D9 (1974) 1Google Scholar
  52. G. Knies, R.G. Moorhouse, and H. Oberlack, Phys. Rev. D9 (74) 2680Google Scholar
  53. G. Knies, H. Oberlack, A. Rittenberg, A.H. Rosenfeld, M.Boydanski, and G. Smadje, Phys. Rev. D10 (74) 2778.Google Scholar
  54. 48.
    R.C.E. Devenish, D.H. Lyth, and W.A. Rankin, DNPL/ P109 (1971)Google Scholar
  55. R.C.E. Devenish, D.H. Lyth, and W. A. Rankin, Physics Lett. 36B, (1971) 394ADSGoogle Scholar
  56. R.C.E. Devenish, D.H. Lyth, and W. A. Rankin, Physics Lett. 47B (1971) 53.ADSGoogle Scholar
  57. 49.
    R. L. Crawford, Glasgow Preprint (1975).Google Scholar
  58. 50.
    P. Noelle, Dissertation Bonn (1975).Google Scholar
  59. 51.
    H. Wessel, Dissertation Bonn (1975).Google Scholar
  60. a.These numbers are preliminary; they are calculated by the authors from ref. 50,51.Google Scholar
  61. 52.
    PDG: average of various analyses of ref. 47, 48, 49 in their earlier stages done by the particle data group, Physics Lett. 50B, 124 (1974).Google Scholar
  62. 53.
    M. Gell-Mann, Schladming Lectures 1972.Google Scholar
  63. 54.
    A. J. Hey and J. Weyer, Phys. Lett. 48B, 69 (1974).Google Scholar
  64. 55.
    There are already many developments towards such models a) R.P. Feynman, M. Kislinger, and F. Ravndal, Phys. Rev. D3, 2706 (1971)CrossRefADSGoogle Scholar
  65. R. G. Lipes, Phys. Rev. D5, (1972) 2849ADSGoogle Scholar
  66. A. Böhm, H. Joos, and M. Krammer, Nucl. Phys. B51 (1973) 397 Schladming lectures 1973Google Scholar
  67. Le Yaouanc et al., Phys. Rev. D9, 2636 (1974)ADSGoogle Scholar
  68. P.J. Walters, A.M. Thomson and F.D. Gault, J.Phys. A7 (74) 1681.Google Scholar
  69. 56.
    J.S. Bell and A.J.G. Hey, CERN Preprint TH 1882.Google Scholar
  70. 57.
    This must not be true generally. As an example remem-ber that orbital angular momentum and spin generate the same algebra but their eigenstates are not connected by a unitary transformation.Google Scholar
  71. 58.
    Instead of quoting the vastliterature we refer to the Schladming lectures 1973 by J.S. Bell.Google Scholar
  72. 59.
    For a recent representation see H. Lipkin, Phys. Reports 8C, (73) 173.Google Scholar
  73. 60.
    A. Love and D. V. Nanopoulos, Sussex preprint (1973).Google Scholar
  74. 61.
    J.L. Rosner and W. P. Petersen, Phys. Rev. D7, (73) 747.Google Scholar
  75. 62.
    R. J. Cashmore, A.J.G. Hey and P.J. Litchfield, Nucl. Phys. B (to be published).Google Scholar
  76. 63.
    F.J. Gilman and I. Karliner, SLAC-PUB-1382 (74).Google Scholar
  77. 64.
    H. Osborn, Nucl. Phys. B80, 113 (74).Google Scholar
  78. 65.
    Formula (80) is a solution, of the commutation relations (22 a,b).Google Scholar
  79. 66.
    The SU(6) w coefficients can be conveniently read off from Table IV of ref. 63.Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • H. Rollnik
    • 1
  1. 1.Physikalisches InstitutUniversität BonnGermany

Personalised recommendations