Advertisement

Finite Conformal Transformations in Local Quantum Field Theory

  • W. Rühl
Conference paper
Part of the Acta Physica Austriaca Supplementum XIV book series (FEWBODY, volume 14/1975)

Abstract

The problem of finite conformal transformations in local quantum field theory.

Keywords

Minkowski Space Conformal Transformation Homotopy Group Conformal Group Universal Covering Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Lüscher, G. Mack, Global conformal invariance in quantum field theory, Institut für Theoretische Physik der Universität Bern, Preprint, August 1974. G. Mack, Lectures presented at the 1974 Bonn summer school.Google Scholar
  2. 2.
    J. Kupsch, W. Rühl, B.C. Yunn, Conformal invariance of quantum fields in two-dimensional space time, Annals of Physics, to appear.Google Scholar
  3. 3.
    W. Rühl, Comm. Math. Phys. 30, 287 (1973) and 34, 149 (1973).Google Scholar
  4. 4.
    I. Segal, Bull. Am. Math. Soc. 77, 958 (1971).CrossRefMATHGoogle Scholar
  5. 5.
    I.T. Todorov, Conformal invariant quantum field theory with anomalous dimensions, CERN preprint TH 1697 (1973); in particular the Appendix, W. Rühl, Conformal kinematics, Teheran lectures, Kaiserslautern Preprint, September (1973), D. H. Mayer, Conformal invariant causal structures on pseudo-Riemannian manifolds, Aachen Preprint, April 1974. T. H. Go, Some remarks on conformal invariant theories formulated on some four-Lorentz manifolds. Aachen Preprint, June 1974.Google Scholar
  6. 6.
    W. Thirring, Annals of Physics 3, 91 (1958).CrossRefMATHADSMathSciNetGoogle Scholar
  7. 7.
    B. Klaiber, in “Quantum Theory and Statistical Physics, Lectures in Theoretical Physics”, Vol X - A, p. 141, ( A.O. Barut and W.E. Brittin, Eds.), Gordon and Breach, New York, 1968.Google Scholar
  8. 8.
    B. Schroer, J.A. Swieca, Phys. Rev. D10, 480 (1974).ADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • W. Rühl
    • 1
  1. 1.Fachbereich PhysikUniversität KaiserslauternGermany

Personalised recommendations