Stochastic Processes and Quantum Theory

  • J. R. Klauder
Conference paper
Part of the Acta Physica Austriaca Supplementum XIV book series (FEWBODY, volume 14/1975)


The concepts of probability theory and quantum theory have been closely intertwined ever since these subjects were developed, and quantum theory has often been the beneficial recipient of such an interchange. Quantum theory expressed in imaginary time becomes the theory of generalized diffusion in real time and this provides useful insight in either a differential equation formulation or a path-integral formulation. More recently, covariant field theories have been re-examined in the context of imaginary time, and such Euclidean field theories have been defined by means of functional integrals for some super-renormalizable models, and, at least heuristically, have long been studied for special renormalizable models.1 Whether or not such methods will ultimately prove essential, it certainly cannot be denied that they possess an enormous appeal and provide considerable intuitive insight.


Quantum Theory Wiener Process Shot Noise Stochastic Variable Stochastic Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Velo and A. Wightman, Eds., Springer Lecture Notes in Physics, Vol. 25 ( Springer-Verlag, 1973 ), Some basic references to applications of probability methods to quantum theory may be traced from contributions and references in Constructive Quantum Field Theory.Google Scholar
  2. 2.
    M. Kac, Proc. Second Berkeley Symposium on Mathematical Statistics and Probability (Univ. of California, 1951 ) p. 189.Google Scholar
  3. 3.
    E. Nelson, Dynamical Theories of Brownian Motion (Princeton Univ. Press, 1967 );Google Scholar
  4. T. Hida, Stationary Stochastic Processes (Princeton Univ. Press, 1970 );Google Scholar
  5. P. Lévy, Le Mouvement Brownien (Gauthier-Villars, 1954 );Google Scholar
  6. K. Itó and H. P. McKean, Jr., Diffusion Processes and their Sample Paths (Academic Press, 1965 ).Google Scholar
  7. 4.
    H. Ezawa, J.R. Klauder and L.A. Shepp, Ann. of Phys. (NY) 88, 588 (1975).CrossRefADSMathSciNetGoogle Scholar
  8. 5.
    K. Itó, Mem. Am. Math. Soc., No. 4, 1 (1951);Google Scholar
  9. J.L.Doob, Stochastic Processes (Wiley & Sons, 1953).Google Scholar
  10. 6.
    H.P. McKean, Jr., Stochastic Integrals (Academic Press, 1969 );Google Scholar
  11. J.L. Doob, Stochastic Processes (Wiley & Sons, 1953 ).Google Scholar
  12. 7.
    A.V. Skorohod, Studies in the Theory of Random Processes (Addison-Wesley, 1965 ).Google Scholar
  13. 8.
    L.A. Shepp, Ann. Math. Statist. 37, 321 (1966).CrossRefMATHMathSciNetGoogle Scholar
  14. 9.
    L. Streit, On Interactions Which Can’t be Turned Off, Bielefeld preprint, Dec. 1974.Google Scholar
  15. 10.
    H. Ezawa, J.R. Klauder and L.A. Shepp, J. Math. Phys. 16, 783 (1975).CrossRefADSMathSciNetGoogle Scholar
  16. 11.
    J.R. Klauder, Acta Physica Austriaca Suppl. XI, 341 (1973);Google Scholar
  17. J.R. Klauder, Phys. Lett. 47B, 523 (1973).Google Scholar
  18. 12.
    For a brief survey see J.R. Klauder, Soluble Models and the Meaning of Nonrenormalizability, Proceedings of the International Symposium on Mathematical Problems in Theoretical Physics, Kyoto, Japan, January 23–29, 1975 (to be published).Google Scholar
  19. 13.
    G.E. Uhlenbeck and L.S. Ornstein, Phys. Rev. 36, 823 (1930);CrossRefADSGoogle Scholar
  20. M.C. Wang and G. E. Uhlenbeck, Rev. Mod. Phys. 17, 323 (1945);CrossRefMATHADSMathSciNetGoogle Scholar
  21. J.L. Doob, Ann. Math. 43, 351 (1942).CrossRefMATHADSMathSciNetGoogle Scholar
  22. J.L. Doob, All three articles are reprinted in Selected Papers in Noise and Stochastic Processes, N. Wax, Ed. ( Dover, 1954 ).Google Scholar
  23. 14.
    I.I. Gihman and A.V. Skorohod, The Theory of Stochastic Processes I (Springer-Verlag, 1974 ), p. 194.MATHGoogle Scholar
  24. 15.
    K. Its, J. Math. Soc. Japan 3, 157 (1951).Google Scholar
  25. 16.
    K. Its, The material of this section is based on J.R.Klauder, Phys. Lett. 56B, 93 (1975).Google Scholar
  26. 17.
    See, e.g., J.D. Bjorken and S.D. Drell, Relativistic Quantum Fields (McGraw-Hill, 1965 ).MATHGoogle Scholar
  27. 18.
    T.Hida, Stationary Stochastic Processes (Princeton Univ. Press, 1970 );Google Scholar
  28. A.V. Skorohod, Integration in Hilbert Space (Springer-Verlag, 1974 ).Google Scholar
  29. 19.
    V.P. Ilin and V.A. Solonnikov, Trudy MIAN SSSR 66, 205(1962). We thank Prof. Solonnikov for helpful correspondence regarding this work.Google Scholar
  30. 20.
    O.A. Ladyzenskaja, V.A. Solonnikov and N.N. Ural’ceva, Linear and Quasi-Linear Equations of Parabolic Type, Trans. of Math. Mono., Vol. 23 ( American Math. Society, 1968 ).Google Scholar
  31. 21.
    I.M. Gel’fand and N.Ya. Vilenkin, Generalized Functions, Vol. 4: Applications of Harmonic Analysis, translated by A. Feinstein (Academic Press, 1964 ).Google Scholar
  32. 22.
    See, e.g., S.O. Rice, Bell System Tech. Journal 24, 46 (1945)Google Scholar
  33. S.O. Rice, Reprinted in Selected Papers on Noise and Stochastic Processes, N.Wax, Ed. ( Dover, 1954 ).Google Scholar
  34. 23.
    See, e.g., J.R. Klauder, Acta Physica Austriaca, Suppl. VIII, 227 (1971);Google Scholar
  35. J.R. Klauder, Lectures in Theoretical Physics, Vol. XIVB, W. Britten, Ed. (Colorado Associated Univ. Press, 1974 ), p. 329;Google Scholar
  36. G.C. Hegerfeldt and J.R. Klauder, Nuovo Cimento 19A, 153 (1974).CrossRefADSMathSciNetGoogle Scholar
  37. G.C. Hegerfeldt and J.R. Klauder, Nuovo Cimento 19A, 153 (1974).CrossRefADSMathSciNetGoogle Scholar
  38. 25.
    E.R. Caianiello and G. Scarpetta, Nuovo Cimento 22A, 448 (1974);CrossRefADSGoogle Scholar
  39. E.R. Caianiello and G. Scarpetta, Nuovo Cimento Letters 11, 283 (1974).CrossRefGoogle Scholar
  40. 26.
    W. Kainz, Nuovo Cimento Letters 12, 217 (1975).CrossRefGoogle Scholar
  41. 27.
    See also, E. Nelson, Dynamical Theories of Brownian Motion (Princeton Univ. Press, 1967 );Google Scholar
  42. L. Guerra and P. Ruggiero, Phys. Rev. Lett. 31, 1022 (1973).CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • J. R. Klauder
    • 1
  1. 1.Bell LaboratoriesMurray HillUSA

Personalised recommendations