Spontaneous Mass Generation, Renormalization Group and Solvable U(N) -Symmetric Models

  • H. Römer
Conference paper
Part of the Acta Physica Austriaca Supplementum XIV book series (FEWBODY, volume 14/1975)


Recently, the problem of giving masses to the gauge mesons which appear in the theoretically attractive gauge theories without spoiling renormalizability and asymptotic freedom has aroused some interest in the mechanism of spontaneous mass generation. The main idea of this mechanism is that masses might be generated by an instability of the perturbation theoretical vacuum, a state for which the expectation values of all the fields of the theory vanish: In some situations the real ground state of a system may not be identical with the vacuum of perturbation theory, some field Φ of the theory develops a non-vanishing expectation value in the real ground state, which results in attributing masses to apparently massless theories.


Effective Potential Mass Generation Asymptotic Freedom Stable Fixed Point Auxiliary Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. W. Higgs, Phys. Lett. 12, 132 (1964)ADSGoogle Scholar
  2. T. Kibble, Phys. Rev. 155, 1554 (1967).CrossRefADSGoogle Scholar
  3. 2.
    S. Coleman, E. Weinberg, Phys. Rev. D7, 1888 (1973).ADSGoogle Scholar
  4. 3.
    D.J. Gross, F. Wilczek, Phys. Rev. Lett. 30, 1343 (1973)CrossRefADSGoogle Scholar
  5. D.J. Gross, F. Wilczek, Phys. Rev. D8, 3633 (1973).ADSGoogle Scholar
  6. 4.
    J. M. Cornwall, R.E. Norton, Phys. Rev. D8, 3338 (1973).ADSGoogle Scholar
  7. 5.
    R. Jackiw, K. Johnson, Phys. Rev. D8, 2386 (1973).ADSGoogle Scholar
  8. 6.
    D.J. Gross, A. Neveu, Phys. Rev. D10, 3235 (1974).ADSGoogle Scholar
  9. 7.
    Y. Frishman, H.Römer, S.Yankielowicz, Weizman Institute WIS-74/45-Ph.Google Scholar
  10. 8.
    M. Gell-Mann, F. Low, Phys. Rev. 95, 1300 (1954).CrossRefMATHADSMathSciNetGoogle Scholar
  11. 9.
    C. G. Callan, Jr., Phys. Rev. D2, 1541 (1970).ADSGoogle Scholar
  12. K. Symanzik, Comm. Math. Phys. 18, 227 (1970)CrossRefADSMathSciNetGoogle Scholar
  13. K. Symanzik, Springer Tracts in Modern Phys., Vol. 57 (1971).Google Scholar
  14. 10.
    R. Dashen, Y. Frishman, Phys. Lett. 46B, 439 (1973).ADSMathSciNetGoogle Scholar
  15. 11.
    H. Römer, H.R. Rubinstein, S.Yankielowicz, Nucl. Phys. B79, 285 (1974).Google Scholar
  16. 12.
    Y. Nambu, G. Jona Lasinio, Phys. Rev. 122, 345 (1961).CrossRefADSGoogle Scholar
  17. G. Jona Lasinio, Nuovo Cim. 34, 1790 (1964).CrossRefGoogle Scholar
  18. 13.
    R. Jackiw, Phys. Rev. D9, 1686 (1974).ADSGoogle Scholar
  19. 14.
    J.M. Cornwall, J. Jackiw, E. Tomboulis, Phys. Rev. D10, 2428 (1974).ADSGoogle Scholar
  20. 15.
    G. Hooft, M. Veltman, Nucl. Phys. B44, 189 (1972).CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • H. Römer
    • 1
  1. 1.Physikalisches InstitutUniversität BonnGermany

Personalised recommendations