Advertisement

Antibiotic Receptor-Sites in Escherichia coli Ribosomes

  • Georg Stöffler
  • Gilbert W. Tischendorf
Part of the Topics in Infectious Diseases book series (TIDIS, volume 1)

Abstract

The translation of mRNA into protein at the ribosomal level can be divided into three phases: initiation, elongation and termination. The initiation phase can be divided into: (a) Recognition of initiation factors and mRNA by the 30S subunit, (b) binding of f-Met-tRNAFet and (c) combination of this initiation complex with a 50S subunit.The elongation phase follows initiation of protein biosynthesis and is composed of repeated cycles. Each cycle can be divided into:(a) EF-Tu dependent aminoacyl-tRNA-binding, (b) peptide bond formation and (c) translocation. The translocation step requires the elongation factor G and GTP. The elongation cycle occurs repeatedly until the termination codon of the mRNA is reached. In response to this codon, release factors are bound and promote release of a newly synthesized protein from the tRNA moiety in a reaction catalyzed by the ribosomal peptidyltransferase (Haselkorn and Rothman-Denes, 1973; Pongs et al., 1974).

Keywords

Ribosomal Protein Cold Spring Harbor Ribosomal Subunit Amino Acid Replacement Amino Acid Exchange 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BALLESTA, J.P.G. and D. Vazquez: Activities of ribosomal cores deprived of proteins L7, L10, L11 and L12. FEBS Letters 48, 266 (1974).PubMedCrossRefGoogle Scholar
  2. BENJAMINI, E., D. Michaeli and J.D. Young: Antigenic determinants of proteins of defined sequences. In Current Topics in Microbiology and Immunology 58, 85 (1972).CrossRefGoogle Scholar
  3. BIRGE, E.A. and C.G. Kurland: Altered ribosomal protein in strepto-mycin-dependent Escherichia coli. Science 166, 1282 (1969).PubMedCrossRefGoogle Scholar
  4. BIRGE, E.A. and C.G. Kurland: Reversion of a streptomycin-dependent strain of Escherichia coli. Mol. Gen. Genet. 109, 356 (1970).PubMedCrossRefGoogle Scholar
  5. BISWAS, D.K. and L. Gorini: The attachment site of streptomycin to the 30S ribosomal subunit. Proc. Natl. Acad. Sci. USA 69, 2141 (1972).PubMedCrossRefGoogle Scholar
  6. BJARE, U. and L. Gorini: Drug dependence reverted by ribosomal ambiguity mutation, ram. J. Mol. Biol.57, 423 (1971).PubMedCrossRefGoogle Scholar
  7. BODE, U., L.C. Lutter and G. Stöffler: Proteins S14 and S19 are near- neigbors in the E. coli ribosome. FEBS Letters 45, 232 (1974).PubMedCrossRefGoogle Scholar
  8. BOLLEN, A., T. Heiser, T. Yamada and J. Davies: Altered ribosomes in antibiotic-resistant mutants of E. coli. Cold Spring Harb. Symp. Quant. Biol. 34, 95 (1969).CrossRefGoogle Scholar
  9. BRECKENRIDGE, L. and L. Gorini: Genetic analysis of streptomycin resistance in Escherichia coli. Genetics 65, 9 (1970).PubMedGoogle Scholar
  10. BUCKEL, P., D. Ruffler, W. Piepersberg and A Böck: RNA overproducing revertants of an alanyl-tRNA synthetase mutant of Escherichia coli. Mol. Gen. Genet. 119, 323 (1972).PubMedGoogle Scholar
  11. BURNS, D.J.W. and E. Cundliffe: Bacterial-protein synthesis. A novel ystem for studying antibiotic action in vivo. Eur. J. Biochem. 37, 570 (1973).PubMedCrossRefGoogle Scholar
  12. CANTOR, C.R.: Fluorescence spectroscopic approaches to the studies of three-dimensional structure of ribosomes. In Ribosomes, Nomura, Tissières and Lengyel, Edts.; Cold Spring Harbor, New York (1974).Google Scholar
  13. COX, E.C., J.R. White and J.G. Flaks: Streptomycin action and the ribosome. Proc. Natl. Acad. Sci. USA 51, 703 (1964).PubMedCrossRefGoogle Scholar
  14. DAVIES, J.E.: Studies on the ribosomes of streptomycin-sensitive and resistant strains of Escherichia coli. Proc. Natl. Acad. Sci. USA 51, 659 (1 964).Google Scholar
  15. DAMES, J., W. Gilbert and L. Gorini: Streptomycin, suppression, and the code. Proc. Natl. Acad. Sci. USA 51, 883 (1964).CrossRefGoogle Scholar
  16. DAVIES, J., L. Gorini and B.D. Davis: Misreading of RNA codewords induced by aminoglycoside antibiotics. Mol. Pharmacol. 1, 93 (1965).PubMedGoogle Scholar
  17. DEKIO, S. and R. Takata: Genetic studies of the ribosomal proteins in Escherichia coli II. Altered 30S ribosomal protein component specific to spectinomycin-resistant mutants. Mol. Gen. Genet. 105, 219 (1969).PubMedCrossRefGoogle Scholar
  18. DEUSSER, E., G. Stöffler, H.G. Wittmann and D. Apirion: Ribosomal Proteins XVI, Altered S4 proteins in Escherichia coli revertants from streptomycin dependence to independence. Mol. Gen. Genet. 109, 298 (1970).PubMedCrossRefGoogle Scholar
  19. DE WILDE, M. and B. Wittmann-Liebold: Localization of the amino acid exchange in protein S5 from Escherichia coli mutant resistant to spectinomycin. Mol. Gen. Genet. 127, 273 (1973).CrossRefGoogle Scholar
  20. DONNER, D. and C.G. Kurland: Changes in the primary structure of a mutationally altered ribosomal protein. Mol. Gen. Genet. 115, 49 (1972).PubMedCrossRefGoogle Scholar
  21. DUBNAU, D., C. Goldthwaite, I. Smith and J. Murmur: Genetic mapping in Bacillus subtilis. J. Mol. Biol. 27, 163 (1967).PubMedCrossRefGoogle Scholar
  22. ERDÖS, T. and A. Ullmann: Effect of streptomycin on the incorporation of amino acids labelled with carbon-14 into ribonucleic acid and protein in a cell-free system of a mycobacterium. Nature 183, 618 (1959).PubMedCrossRefGoogle Scholar
  23. FELLNER, P.: Structure of the 16S and 23S ribosomal RNAs. In Ribosomes, Nomura, Tissières and Lengyel, Edts.; Cold Spring Harbor, New York (1974).Google Scholar
  24. FITZGERALD, R.J., F. Bernheim and D.B. Fitzgerald: The inhibition by streptomycin of adaptive enzyme formation in mycobacteria. J. Biol. Chem. 175, 195 (1948).PubMedGoogle Scholar
  25. FLAKS, J.G., E.C. Cox, M.L. Witting and J.R. White: Polypeptide synthesis with ribosomes from streptomycin-resistant and dependent Escherichia coli. Biochim. Biophys. Res 7, 390 (1962).CrossRefGoogle Scholar
  26. FUNATSU, G., K.H. Nierhaus and H.G. Wittmann: Determination of allele types and amino acid exchange in protein S12 of three streptomycin resistant mutants of Escherichia coli. Biochim. Biophys. Acta 287, 282 (1972).PubMedGoogle Scholar
  27. FUNATSU, G., K. Nierhaus and B. Wittmann-Liebold: Ribosomal Proteins XXII. Studies on the altered protein S5 from a spectinomycinresistant mutant of Escherichia coli. J. Mol. Biol. 64, 201 (1972).PubMedCrossRefGoogle Scholar
  28. FUNATSU, G., W. Puls, E. Schiltz, J. Reinbolt and H.G. Wittmann: Ribosomal Proteins XXXI. Comparativestudies on altered proteins S4 of six Escherichia coli revertants from streptomycin dependence. Mol. Gen. Genet. 115, 131 (1972).PubMedCrossRefGoogle Scholar
  29. FUNATSU, G., E. Schiltz and H.G. Wittmann: Ribosomal Proteins XXVII. Localization of the amino acid exchanges in protein S5 from two E. coli mutants resistant to spectinomycin. Mol. Gen. Genet. 114, 106 (1971).CrossRefGoogle Scholar
  30. FUNATSU, G. and H.G. Wittmann: Ribosomal Proteins XXXIII. Location of amino acid replacements in protein S12 isolated from Escherichia coli mutants resistant to streptomycin. J. Mol. Biol. 68, 547 (1972).PubMedCrossRefGoogle Scholar
  31. GARRETT, R.A. and H.G. Wittmann: Protein-RNA interaction in bacterial ribosomes. In Protein Synthesis in Reproductive Tissue, Diczfalusy, Ed.; Karolinska Symposia on Research Methods in Reproductive Endocrinology, 6th Symp., Stockholm, 1973, P. 75.Google Scholar
  32. GRAY, P.N., G. Bellemare, R. Monier, R.A. Garrett and G. Stöffler: Identification of the nucleotide sequences involved in the interaction between Escherichia coli 5S RNA and specific 50S subunit proteins. J. Mol. Biol. 77, 133 (1973).PubMedCrossRefGoogle Scholar
  33. GRAY, P.N., R.A. Garrett, G -Stöffler and R. Monier: An attempt at the identification of the proteins involved in the incorporation of 5-S RNA during 50-S ribosomal subunit assembly. Eur. J. Biochem. 28, 412 (1972).PubMedCrossRefGoogle Scholar
  34. GOLDTHWAITE, C. and I. Smith: Genetic mapping of aminoglycoside and fusidic acid resistant mutations in Bacillus subtilis. Mol. Gen. Genet. 114, 181 (1972).PubMedCrossRefGoogle Scholar
  35. GORINI, L. and E. Kataja: Phenotypic repair by streptomycin of defect-ive genotypes in E. coli. Proc. Natl. Acad. Sci. USA 51, 487 (1964).PubMedCrossRefGoogle Scholar
  36. GUTHRIE, C., H. Nashimoto and M. Nomura: Studies on the assembly of ribosomes in vivo. Cold Spring Harb. Symp. Quant. Biol. 34, 69 (1969).CrossRefGoogle Scholar
  37. HAHN, F.E. and J. Ciak: Studies on the mode of action of streptomycin. I. Inhibition of bacterial protein synthesis by streptomycin.Bact. Proc. 131 (1959).Google Scholar
  38. HAHN, F.E. and C.L. Wisseman: Inhibition of adaptive enzyme formation by antimicrobial agents. Proc. Soc. Exptl. Biol. Med. 76, 533 (1951).Google Scholar
  39. HAMEL, E., M. Koka and T. Nakamoto: Requirement of an E. coli 50S ribosomal protein component for effective interaction of the ribosome with T and G factors and with guanosine triphosphate. J. Biol. Chem. 247, 805 (1972).PubMedGoogle Scholar
  40. HASELKORN, R. and L.B. Rothman-Denes: Protein Synthesis. Ann. Rev. Biochem. 42, 397 (1973).PubMedCrossRefGoogle Scholar
  41. HASENBANK, R., C. Guthrie, G. Stöffler, H.G. Wittmann, L. Rosen and D. Apirion: Electrophoretic and immunological studies on ribosomal proteins of 100 Escherichia coli revertants from streptomycin dependence. Mol. Gen. Genet. 127, 1 (1973).PubMedCrossRefGoogle Scholar
  42. HASHIMOTO, K.: Streptomycin resistance in Escherichia coli analyzed by transduction. Genetics 45, 49 (1960).PubMedGoogle Scholar
  43. HELSER, T.L., J.E. Davies and J.E. Dahlberg: Change in methylation of 16S ribosomal RNA associated with mutation to kasugamycin resistance in Escherichia coli. Nature New Biology 233, 12 (1971).PubMedGoogle Scholar
  44. HELSER, T.L., J.E. Davies and J.E. Dahlberg: Mechanism of kasugamycin resistance in Escherichia coli. Nature New Biology 235, 6 (1972).PubMedGoogle Scholar
  45. HIGHLAND, J.H., J.WI Bodley, J. Gordon, R. Hasenbank and G. Stöffler: Identity of the ribosomal proteins involved in the interaction with elongation factor G. Proc. Natl. Acad. Sci. USA 70, 142 (1973).CrossRefGoogle Scholar
  46. HIGHLAND, J.H., J.WI Bodley, J. Gordon, R. Hasenbank and G. Stöffler: Identity of the ribosomal proteins involved in the interaction with elongation factor G. Proc. Natl. Acad. Sci. USA 70, 142 (1973).CrossRefGoogle Scholar
  47. HIGHLAND, J.H., E. Ochsner, J. Gordon, J.W. Bodley, R. Hasenbank and G. Stöffler: Coordinate inhibition of elongation factor G function and ribosomal subunit association by antibodies to several ribosomal proteins. Proc. Natl. Acad. Sci. USA 71, 627 (1974).PubMedCrossRefGoogle Scholar
  48. HORNE, J.R. and V.A. Erdmann: Isolation and characterization of 5S RNA-protein complexes from Bacillus stearothermophiZus and Escherichia coli ribosomes. Mol. Gen. Genet. 119, 337 (1972).PubMedGoogle Scholar
  49. HORNE, J.R. and V.A. Erdmann: ATPase and GTPase activities associated with a specific 5S RNA-protein complex. Proc. Natl. Acad. Sci. USA 70, 2870 (1973).PubMedCrossRefGoogle Scholar
  50. HORNE, J.R. and V.A. Erdmann: Effects of ethanol, methanol and different antibiotics on the ATPase and GTPase activities associated with B. stearothermophiZus 5S RNS-protein complex. FEBS Letters 42, 42 (1974).PubMedCrossRefGoogle Scholar
  51. HOWARD, G.A. and J. Gordon: Peptidyltransferase activity of ribosomal particles lacking protein L11. FEBS Letters 48, 271 (1974).PubMedCrossRefGoogle Scholar
  52. HSIUNG, N., S.A. Reines and C.R. Cantor: Investigation of the ribosomal peptidyl transferase center using a photoaffinity label. J. Mol. Biol. 88, 841 (1974).PubMedCrossRefGoogle Scholar
  53. HUANG, K.H. and C.R. Cantor: Surface topography of the 30S Escherichic coli ribosomal subunit: Reactivity towards fluorescein isothiocyanate. J. Mol. Biol. 67, 265 (1972).PubMedCrossRefGoogle Scholar
  54. ITOH, T. and H.G. Wittmann Amino acid replacement in protein S5 and S12 from streptomycin dependence to independence. Mol. Gen. Genet. 127, 19 (1973).CrossRefGoogle Scholar
  55. KAJI, H. and Y. Tanaka: Binding of dihydrostreptomycin to ribosomal subunits. J. Mol. Biol. 32, 221 (1968).PubMedCrossRefGoogle Scholar
  56. KALTSCHMIDT, E. and H.G. Wittmann: Ribosomal proteins XII. Number of proteins in small and large ribosomal subunits of Escherichia coli as determined by two-dimensional gel electrophoresis. Proc. Natl. Acad. Sci. USA 67, 1276 (1970).PubMedCrossRefGoogle Scholar
  57. KISCHA, K., W. Möller and G. Stöffler: Reconstitution of a GTPase activity by a 50S ribosomal protein from E. coli. Nature 233, 62 (1971).CrossRefGoogle Scholar
  58. KREIDER, G. and B.L. Brownstein: A mutation suppressing streptomycin dependence. II. An altered protein in the 30S ribosomal subunit. J. Mol. Biol. 61, 135 (1971).PubMedCrossRefGoogle Scholar
  59. KREIDER, G. and B.L. Brownstein: Ribosomal proteins involved in the suppression of streptomycin dependence in Escherichia coli. J. Bact. 109, 780 (1972).PubMedGoogle Scholar
  60. KURLAND, C.G Functional organization of the 30S ribosomal subunit. In Ribosomes, Nomura, Tissières and Lengyel, Edts.; Cold Spring Harbor, New York (1974).Google Scholar
  61. LELONG, J.C., H.A.Cousin and F.Gros, R. Miskin, Z. Vogel, Y. Groner and M. Revel: Protection of Escherichia coli ribosomes against streptomycin by purified initiation factors. Eur. J. Biochem. 27, 174 (1972).PubMedCrossRefGoogle Scholar
  62. LELONG, J.C., D. Gros, F. Gros, A. Bollen, R. Maschler and G. Stöffler: Function of individual 30S subunit proteins of E. Coli. The effect of specific immunoglobulin fragments (Fab) on the activities of ribosomal decoding sites. Proc. Natl. Acad. Sci. USA 71, 248 (1974).PubMedCrossRefGoogle Scholar
  63. LUTTER, L.C., U. Bode, C.G. Kurland and G. Stöffler: Ribosomal protein neighborhoods III. Cooperativity of assembly. Mol. Gen. Genet. 129, 167 (1974).PubMedCrossRefGoogle Scholar
  64. LUTTER, L.C., H. Zeichhardt, C.G. Kurland and G. Stöffler: Ribosomal protein neighborhoods I. S18 and S21 as well as S5 and S8 are neighbors. Mol. Gen. Genet. 119, 357 (1972).PubMedGoogle Scholar
  65. MASUKAWA, H.: Localization of sensitivity to kanamycin and streptomycin in 30S ribosomal proteins of Escherichia coli. J. Antibiotics 22, 612 (1969).Google Scholar
  66. MOLLER, W.: The ribosomal components involved in EF-G-and EF-Tudependent GTP hydrolysis. In Ribosomes, Nomura, Tissières and Lengyel, Edts., Cold Spring Harbor, New York (1974).Google Scholar
  67. MOMOSE, H. and L. Gorini: Genetic analysis of streptomycin dependence in Escherichia coli. Genetics 67, 19 (1971).PubMedGoogle Scholar
  68. MONIER, R.: 5S RNA. In Ribosomes, Nomura, Tissières and Lengyel, Edts., Cold Spring Harbor, New York (1974).Google Scholar
  69. MORGAN, J. and R. Brimacombe: A preliminary three-dimensional arrangement of the proteins in the Escherichia coli 30S ribosomal sub-particle. Eur. J. Biochem. 37, 472 (1973).PubMedCrossRefGoogle Scholar
  70. MORRISON, C.A., R.A. Garrett, H. Zeichhardt and G. Stöffler: Proteins occurring at, or near the subunit interface of E. coli ribosomes. Mol. Gen. Genet. 127, 359 (1973).PubMedCrossRefGoogle Scholar
  71. NASHIMOTO, H., W. Held, E. Kaltschmidt and M. Nomura: Structure and function of bacterial ribosomes. XII. Accumulation of 21S particles by some cold-sensitive mutants of Escherichia coli. J. Mol. Biol. 62, 121 (1971).PubMedCrossRefGoogle Scholar
  72. NASHIMOTO, H. and M. Nomura: Structure and function of bacterial ribosomes XI. Dependence of 50S ribosomal assembly on simultaneous assembly of 30S subunits. Proc. Natl. Acad. Sci. USA 67, 1440 (1970).Google Scholar
  73. NEWCOMBE, H.B. and M.H. Nyholm: The inheritance of streptomycin resistance and dependence in crosses of Escherichia. coli. Genetics 35, 603 (1950).PubMedGoogle Scholar
  74. NIERHAUS, K.H. and O. Montejo: A protein involved in the peptidyltransferase activity of Escherichia coli ribosomes. Proc. Natl. Acad. Sci. USA 70, 1931 (1973).PubMedCrossRefGoogle Scholar
  75. NIERHAUS, D. and K.H. Nierhaus: Identification of the chloramphenicolbinding protein in Escherichia coli ribosomes by partial reconstitution. Proc. Natl. Acad. Sci. USA 70, 2224 (1973).PubMedCrossRefGoogle Scholar
  76. NOMURA, M. and V.A. Erdmann: Reconstitution of 50S ribosomal subunits from dissociated molecular components. Nature 228, 744 (1970).PubMedCrossRefGoogle Scholar
  77. NOMURA, M., S. Mizushima, M. Ozaki, P. Traub and C.V. Lowry: Structure and function of ribosomes and their molecular components. Cold Spring Harb. Symp. Quant. Biol. 34, 49 (1969).CrossRefGoogle Scholar
  78. OSAWA, S., E. Otake, R. Takata, S. Dekio, M. Matsubara, T. Itoh and A. Muto: Ribosomal protein genes in bacteria. FEBS Symp. 23, 313 (1972).Google Scholar
  79. OSAWA, S., R. Takata, K. Tanaka and M. Tamaki: Chloramphenicol resistant mutants of Bacillus subtilis. Mol. Gen. Genet. 127, 163 (1973).PubMedCrossRefGoogle Scholar
  80. OTAKA, E., T. Itoh and S. Osawa: Ribosomal proteins of bacterial cells: Strain-and species-specificity. J. Mol. Biol. 33, 93 (1968).PubMedCrossRefGoogle Scholar
  81. OTAKA, E., T. Itoh, S. Osawa, K. Tanaka and M. Tamaki: Peptide analyses of a protein component, 50–8, of 50S ribosomal subunits from erythromycin resistant mutants of Escherichia coli and Escherichia freundii. Mol. Gen. Genet. 114, 14 (1971).CrossRefGoogle Scholar
  82. OZAKI, M., S. Mizushima and M. Nomura: Identification and functional characterization of the protein controlled by the streptomycin resistant locus in E. coli. Nature 222, 333 (1969).PubMedCrossRefGoogle Scholar
  83. PESTKA, S.: Inhibitors of ribosome functions. Ann. Rev. Microbiol. 25, 487 (1971).CrossRefGoogle Scholar
  84. PESTKA, S. and J.W. Bodley: In Antibiotics, Gottlieb and Shaw, Edts., Springer, Berlin-Heidelberg-New York (1974).Google Scholar
  85. PONGS, 0., R. Bald and V.A. Erdmann: Identification of chloramphenicol-binding protein in Escherichia coli ribosomes by affinity labeling. Proc. Natl. Acad. Sci. USA 70, 2229 (1973).CrossRefGoogle Scholar
  86. PONGS, 0. and V.A. Erdmann: Affinity labeling of E. coli ribosomes with a streptomycin-analogue. FEBS Letters 37, 47 (1973).CrossRefGoogle Scholar
  87. PONGS, 0., K.H. Nierhaus, V.A. Erdmann and H.G. Wittmann: Active sites in Escherichia coli ribosomes. FEBS Letters 40, S28 (1974).CrossRefGoogle Scholar
  88. REINBOLT, J. and E. Schiltz: The primary structure of ribosomal protein S4 from Escherichia coli. FEBS Letters 36, 250 (1973).PubMedCrossRefGoogle Scholar
  89. ROSSET, R. and L. Gorini: Ribosomal ambiguity mutation. J. Mol. Biol. 39, 95 (1969).PubMedCrossRefGoogle Scholar
  90. SCHREINER, G. and K.H. Nierhaus: Protein involved in the binding of dihydrostreptomycin to ribosomes of Escherichia coli. J. Mol. Biol. 81, 71 (1973).PubMedCrossRefGoogle Scholar
  91. SMITH, I., C. Goldthwaite and D. Dubnau: The genetic of ribosomes in Bacillus subtilis. Cold Spring Harb. Symp. Quant. Biol. 34, 85 (1969).CrossRefGoogle Scholar
  92. SPEYER, J.F., P. Lengyel and V. Basilio: Ribosomal localization of streptomycin sensitivity. Proc. Natl. Acad. Sci. USA 48, 684 (1962).PubMedCrossRefGoogle Scholar
  93. SPOTTS, C.R. and R.Y. Stanier: Mechanism of streptomycin action on bacteria: A unitary hypothesis. Nature 192, 633 (1961).PubMedCrossRefGoogle Scholar
  94. STAEHELIN, T., D. Maglott and R.E. Monro: On the catalytic center of peptidyl transfer: A part of the 50S ribosome structure. Cold Spring Harb. Symp. Quant. Biol. 34, 39 (1969).CrossRefGoogle Scholar
  95. STAEHELIN, T. and M. Meselson: Determination of streptomycin sensi- tivity by a subunit of the 30S ribosome of Escherichia coli. J. Mol. Biol. 19, 207 (1966).PubMedCrossRefGoogle Scholar
  96. STÖFFLER, G.: Structure and function of the Escherichia coli ribosome: Immunological analysis. In Ribosomes, Nomura, Tissières and Lengyel, Edts., Cold Spring Harbor, New York (1974).Google Scholar
  97. STÖFFLER, G., E. Deusser, H.G. Wittmann and D. Apirion: Ribosomal Proteins XIX. Altered S5 ribosomal protein in an Escherichia coli revertant from streptomycin dependence to independence. Mol. Gen. Genet. 111, 334 (1971).PubMedCrossRefGoogle Scholar
  98. STÖFFLER, G., R. Hasenbank, M. Lütgehaus, R. Maschler, C.A. Morrison, H. Zeichhardt and R.A. Garrett: The accessibility of proteins of the Escherichia coli ribosomal subunit to antibody binding. Mol. Gen. Genet. 127, 89 (1973).PubMedCrossRefGoogle Scholar
  99. STÖFFLER, G. and H.G. Wittmann: Sequence differences of Escherichia coli 30S ribosomal proteins as determined by immunochemical methods. Proc. Natl. Acad. Sci. USA 68, 2283 (1971a).PubMedCrossRefGoogle Scholar
  100. STÖFFLER, G. and H.G. Wittmann Ribosomal Proteins, XXV. Immunological studies on Escherichia coli ribosomal proteins. J. Mol. Biol. 62, 407 (1971b).PubMedCrossRefGoogle Scholar
  101. SZEKELY, M., R. Brimacombe and J. Morgan: A specific ribonucleoprotein fragment from Escherichia coli 30S ribosomes. Location of the RNA component in 16S RNA. Eur. J. Biochem. 35, 574 (1973).PubMedCrossRefGoogle Scholar
  102. TANAKA, N., H. Masukawa and U. Umezawa: Structural basis of kanamycin for miscoding activity. Biochem. Biophys. Res. 26, 544 (1967).CrossRefGoogle Scholar
  103. TANAKA, K., M. Tamaki, A. Kimura, R. Takata and S. Osawa: Erythromycin resistant mutants from Bacillus subtilis. Mol. Gen. Genet. 127, 157 (1973).PubMedCrossRefGoogle Scholar
  104. TANAKA, K., H. Teraoka, M. Tamaki, R. Takata and S. Osawa: Phenotypes represented by a mutational change in a 50S ribosomal protein component, 50–8, in Escherichia coli. Mol. Gen. Genet. 114, 9 (1971).Google Scholar
  105. TANAKA, K., H. Teraoka, M. Tamaki, R. Takata and S. Osawa: Phenotypes represented by a mutational change in a 50S ribosomal protein component, 50–8, in Escherichia coli. Mol. Gen. Genet. 114, 9 (1971).Google Scholar
  106. TISCHENDORF, G.W., H. Zeichhardt and G. Stöffler: Location of proteins S5, S13 and S14 on the surface of the 30S ribosomal subunit from Escherichia coli as determined by immune electron microscopy. Mol. Gen. Genet. 134, 209 (1974a).PubMedCrossRefGoogle Scholar
  107. TISCHENDORF, G.W., H. Zeichhardt and G. Stöffler: Determination of the location of proteins L14, L17, L18, L19, L22 and L23 on the surface of the 50S ribosomal subunit of Escherichia coli by immune electron microscopy. Mol. Gen. Genet. 134, 187 (1974).PubMedCrossRefGoogle Scholar
  108. TRAUB, P., K. Hosokawa and M. Nomura: Streptomycin sensitivity and the structural components of the 30S ribosomes of Escherichia coli. J. Mol. Biol. 19, 211 (1966).PubMedCrossRefGoogle Scholar
  109. TRAUB, P. and Nomura, M.: Structure and function of E coli ribosomes. V. Reconstitution of functionally active 30S ribosomal particles from RNA and protein. Proc. Natl. Acad. Sci. USA 59, 777 (1968).Google Scholar
  110. TRAUT, R.R.: Protein topography by ribosomal subunits from Escherichia coli. In Ribosomes, Nomura, Tissières and Lengyel, Edts., Cold Spring Harbor, New York (1974).Google Scholar
  111. VAZQUEZ, D.: Inhibitors of protein synthesis. FEBS Letters 40, S63 (1974).PubMedCrossRefGoogle Scholar
  112. WABL, M.R.: Electron microscopic localization of two proteins on the surface of the 50S ribosomal subunit of Escherichia coli using specific antibody markers. J. Mol. Biol. 84, 241 (1974).PubMedCrossRefGoogle Scholar
  113. WEBER, H.J.: Stoichiometric measurements of 30S and 50S ribosomal proteins from Escherichia coli. Mol. Gen. Genet. 119, 233 (1972).PubMedCrossRefGoogle Scholar
  114. WEISBLUM, B. and J. Davies: Antibiotic inhibitors of the bacterial ribosome. Bacteriol. Rev. 32, 493 (1968).PubMedGoogle Scholar
  115. WITTMANN, H.G.: Purification and identification of Escherichia coli ribosomal proteins. In Ribosomes, Nomura, Tissières and Lengyel, Edts., Cold Spring Harbor, New York (1974).Google Scholar
  116. WITTMANN-LIEBOLD, B. and H.G. Wittmann: Ribosomal Proteins XX. Isolation and analysis of the tryptic peptides of proteins S5 from strain K and B of Escherichia coli. Biochim. Biophys. Acta 251, 44 (1971).Google Scholar
  117. WITTMANN, H.G., G. Stöffler, D. Apirion, L. Rosen, K. Tanaka, M. Tamaki, R. Takata, S. Dekio, E. Otake and S. Osawa: Biochemical and genetic studies on two different types of erythromycin re-sistant mutants of Escherichia coli with altered ribosomal proteins. Mol. Gen. Genet. 127, 175 (1973).PubMedCrossRefGoogle Scholar
  118. WITTMANN, H.G. and B. Wittmann-Liebold: Chemical structure of bacterial ribosomal proteins. In Ribosomes, Nomura, Tissières and Lengyel, Edts., Cold Spring Harbor, New York (1974).Google Scholar
  119. ZIMMERMANN, R.A. and Feltner, P.: RNA-protein interactions in the ribosome. In Ribosomes, Nomura, Tissières and Lengyel, Edts.,Cold Spring Harbor, New York (1974).Google Scholar
  120. ZIMMERMANN, R.A., R.T. Garvin and L. Gorini: Alteration of a 30S ribosomal protein accompanying ram mutation in Escherichia coli Proc. Natl. Acad. Sci. USA 68, 2263 (1971).CrossRefGoogle Scholar
  121. ZIMMERMANN, R.A., Y. Ikeya and P.F. Sparling: Alteration of ribosomal protein S4 by mutation linked to kasugamycin resistance in Escherichia coli. Proc. Natl. Acad. Sci. USA 70, 71 (1973).PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1975

Authors and Affiliations

  • Georg Stöffler
  • Gilbert W. Tischendorf

There are no affiliations available

Personalised recommendations