Advertisement

Spin-Labelled Intermediates as Targets of Antibiotic Action in Peptidoglycan Synthesis

  • L. S. Johnston
  • W. P. Hammes
  • H. A. Lazar
  • F. C. Neuhaus
Conference paper
Part of the Topics in Infectious Diseases book series (TIDIS, volume 1)

Abstract

Spin labels provide sensitive probes to study the microenvironments of intermediates in membrane catalyzed reactions. The electron spin resonance (ESR) spectrum of the spin label is a function of the motion that the probe experiences and the polarity of the solvent surrounding the probe. Thus, information about the mobility of the spin label and its microenvironment can be deduced from its spectrum. Indeed, McConnell and other investigators have utilized this technique to analyze lateral diffusion of phospholipids, conformation changes, flip-flop of phospholipids, phase transitions, and fluidity in membranes. It is the purpose of this paper to report some of our observations on spin-labeled intermediates in cell wall biosynthesis and how they may be used as targets of antibiotic action.

Keywords

Electron Spin Resonance Electron Spin Resonance Spectrum Spin Label Rotational Correlation Time Peptidoglycan Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ghuysen, J. -M. and G. D. Shockman: Biosynthesis of peptidoglycan, In L. Leive (Editor), Bacterial Membranes and Walls, vol. 1, p. 37–130. Marcel Dekker, Inc., New York (1973).Google Scholar
  2. Hammes, W. P. and F. C. Neuhaus: On the specificity of phospho-N-acetylmuramyl-pentapeptide translocase: the peptide subunit of uridine diphosphate-N-acetylmuramyl-pentapeptide. J. Biol. Chem. 249, 3140–3150 (1974).PubMedGoogle Scholar
  3. Hammes, W. P. and F. C. Neuhaus: Biosynthesis of peptidoglycan in Gaffkya homari: role of the peptide subunit of UDP-MurNAc-pentapeptide. J. Bacteriol. in press.Google Scholar
  4. Hammes, W. P. and F. C. Neuhaus: On the mechanism of action of vancomycin: inhibition of peptidoglycan synthesis in Gaffkya homari. Submitted for publication. Antimicrobial Agents and Chemotherapy.Google Scholar
  5. Johnston, L. S. and F. C. Neuhaus, unpublished observations (1974).Google Scholar
  6. Jost, P. and O. H. Griffith: Electron spin resonance and the spin labeling method, In C. Chignell (Editor), Methods in Pharmacology, vol. 2, p. 223–276. Appleton-Century-Crofts, New York (1972).Google Scholar
  7. Jordan, D. C. and P. E. Reynolds: Vancomycin, In D. Gottlieb and P. D. Shaw (Editors), Antibiotics: mechanism of action, vol. 1, p. 102–116. Springer-Verlag, Heidelberg (1967).Google Scholar
  8. Klotz, I. M., H. Triwush, F. M. Walker: The binding of organic ions by proteins. Competition phenomena and denaturation effects. J. Amer. Chem. Soc. 70, 2935–2941 (1948).CrossRefGoogle Scholar
  9. Matsuhashi, M., C. P. Dietrich, J. L. Strominger. Incorporation of glycine into the cell wall glycopeptide in Staphylococcus aureus: role of sRNA and lipid intermediates. Proc. Nat. Acad. Sci. U.S.A. 54, 587–594 (1965).CrossRefGoogle Scholar
  10. Mukai, K., C. M. Lang, D. B. Chesnut: A spin label investigation of some model membrane systems. Chem. Phys. Lipids 9, 196–216 (1972).PubMedCrossRefGoogle Scholar
  11. Nieto, M. and H. Perkins: Modifications of the acyl-D-alanyl-D-alanine terminus affecting complex-formation with vancomycin. Biochem. J. 123, 789–803 (1971).PubMedGoogle Scholar
  12. Perkins, H. R.: Specificity of combination between mucopeptide precursors and vancomycin or ristocetin. Biochem. J. 111, 195–205 (1969).PubMedGoogle Scholar
  13. Perkins, H. R. and M. Nieto: The chemical basis for the action of the vancomycin group of antibiotics. Annals of the New York Academy of Science 235, 348–363 (1974).CrossRefGoogle Scholar
  14. Siewert, G. and J. L. Strominger: Bacitracin: an inhibitor of the dephosphorylation of lipid pyrophosphate, an intermediate in biosynthesis of the peptidoglycan of bacterial cell walls. Proc. Nat. Acad. Sci. U.S.A. 57, 767–773 (1967).CrossRefGoogle Scholar
  15. Stone, T. J., T. Buckman, P. L. Nordio, H. M. McConnell: Spin-labeled biomolecules, Proc. Nat. Acad. Sci. U.S.A. 54, 1010–1017 (1965).CrossRefGoogle Scholar
  16. Struve, W. G., R. K. Sinha, F. C. Neuhaus: On the initial stage in peptidoglycan synthesis. Phospho-N-acetylmuramyl-pentapeptide translocase (uridine monophosphate). Biochemistry 5, 82–93 (1966).PubMedCrossRefGoogle Scholar
  17. Swenson, J. C.: Isolation, characterization, and possible function of a new peptidoglycan precursor [UDP-N-acetylmuramyl-alanyl-y-D-glutamyl-lysyl(e-alanyl)-D-alanyl-D-alanine]Irom Staphylococcus aureus Copenhagen, Ph.D. thesis, Northwestern University (1974).Google Scholar
  18. Tipper, D. J. and J. L. Strominger: Mechanism of action of penicillins: a proposal based on their structural similarity to acyl D-alanyl-D-alanine. Proc. Nat. Acad. Sci. U.S.A. 54, 1133–1141 (1965).CrossRefGoogle Scholar
  19. Wallas, C. H. and J. L. Strominger: Ristocetins, inhibitors of cell wall syn- thesis in Staphylococcus aureus. J. Biol. Chem. 238, 2264–2266 (1963).PubMedGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1975

Authors and Affiliations

  • L. S. Johnston
  • W. P. Hammes
  • H. A. Lazar
  • F. C. Neuhaus

There are no affiliations available

Personalised recommendations