Advertisement

A Structural Model of the Chloramphenicol Receptor Site

  • Fred E. Hahn
  • Peter Gund
Part of the Topics in Infectious Diseases book series (TIDIS, volume 1)

Abstract

Having a relatively simple chemical structure, chloramphenicol became the first antibiotic to be synthesized by organic-chemical methods (Controulis, Rebstock and Crooks, 1949). A large number of chloramphenicol derivatives was subsequently prepared. Kolosov, Shemiakin, Khokhlov and Gurevich tabulated, in 1961, more than 500 such compounds, and the total number of known chloramphenicol derivatives is, by now, much greater.

Keywords

Acyl Substituent Peptidyl Transferase Bacterial Growth Inhibition Acyl Side Chain Aromatic Ring System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ajò, D., M. Bossa, A. Damiani, R. Fidenzi, S. Gigli and G. Ramunni: Conformational Analysis. Quantum-Mechanical and Empirical Methods. In Conformation of Biological Molecules and Polymers, E.D. Bergmann and B. Pullman, eds., Jerusalem, 1973, p. 571.Google Scholar
  2. Bald, R., V.A. Erdmann and O. Pongs: Irreversible binding of chloramphenicol analogues to E. coli ribosomes. FEBS Letters 28, 149 (1972).PubMedCrossRefGoogle Scholar
  3. Bustard, T.M., R.S. Egan and T.J. Perun: Conformational studies on chloramphenicol and related molecules. Tetrahedron 29, 1961 (1973).CrossRefGoogle Scholar
  4. Cammarata, A.: An apparent correlation between the in vitro activity of chloramphenicol analogs and electronic polarizability. J. Med. Chem. 10, 525 (1967).PubMedCrossRefGoogle Scholar
  5. Cavalli, L.L. and G.A. Maccacaro: Polygenic inheritance of drug-resistance in the bacterium Escherichia coli. Heredity 6, 311 (1952).CrossRefGoogle Scholar
  6. Celma, M.L., R.E. Monro and D. Vazquez: Substrate and antibiotic binding sites at the peptidyl transferase centre of E. coli ribosomes: Binding of UACCA-Leu to 50s subunits. FEBS Letters 13, 247 (1971).PubMedCrossRefGoogle Scholar
  7. Cernâ, J. and I. Rychlík: Cross resistance of Escherichia coli B ribosomes to inhibition of the puromycin reaction by erythromycin, spiramycin and chloramphenicol. Biochim. Biophys. Acta 157 436 (1968).Google Scholar
  8. Cheney, V.: Ab initio calculations on large molecules using molecular fragments, structural correlations between natural substrate moieties and some antibiotic inhibitors of peptidyl transferase. J. Med. Chem. 17, 590 (1974).PubMedCrossRefGoogle Scholar
  9. Collins, R.J., B. Ellis, S.B. Hansen, H.S. Mackenzie, R.J. Moualim, V. Petrow, O. Stephenson and B. Sturgeon: Some observations on the structural requirements for antibiotic action in the chloramphenicol series. Part II. J. Pharm. Pharmacol. 4, 693 (1952).PubMedCrossRefGoogle Scholar
  10. Contreras, A., M. Barbacid and D. Vazquez: Binding to ribosomes and mode of action of chloramphenicol analogues. Biochim. Biophys. Acta 349, 376 (1974).PubMedGoogle Scholar
  11. Controulis, M., M.C. Rebstock and H.M. Crooks: Chloramphenicol (Chloromycetin). V. Synthesis. J. Am. Chem. Soc. 71, 2458 (1949).Google Scholar
  12. Coutsogeorgopoulos, C.: On the mechanism of action of chloramphenicol in protein synthesis. Biochim. Biophys. Acta 129, 214 (1966).PubMedGoogle Scholar
  13. Coutsogeorgopoulos, C.: Inhibitors of the reaction between puromycin and polylysyl-RNA in the presence of ribosomes. Biochem. Biophys. Res. Comm. 27, 46 (1967).PubMedCrossRefGoogle Scholar
  14. Das, H.K., A. Goldstein and L.C. Kanner: Inhibition by chloramphenicol of the growth of nascent protein chains in Escherichia coli. Mol. Pharmacol. 2, 158 (1966).PubMedGoogle Scholar
  15. Dunitz, J.D.: The crystal structure of chloramphenicol and bromamphenicol. J. Am. Chem. Soc. 74, 995 (1952).CrossRefGoogle Scholar
  16. Eckermann, D.J., P. Greenwell and R.H. Symons: Peptide-bond formation on the ribosome. A comparison of the acceptor-substrate specificity of peptidyl transferase in bacterial and mammalian ribosomes using puromycin analogues. Eur. J. Biochem. 41, 547 (1974).PubMedCrossRefGoogle Scholar
  17. Fahnestock, S., H. Neumann, V. Shashoua and A. Rich: Ribosome-catalyzed ester formation. Biochemistry 9, 2477 (1970).PubMedCrossRefGoogle Scholar
  18. Fahnestock, S. and A. Rich: Ribosome-catalyzed polyester formation. Science 173, 340 (1971).PubMedCrossRefGoogle Scholar
  19. Farkas, J. and J. Sicher: The chloramphenicol series. V. Analogs containing chlorine in the side chain and oxazolines. Chem. Listy. 47, 552 (1953).Google Scholar
  20. Gale, E.F.: Mechanism of antibiotic action. Pharm. Rev. 15, 481 (1963).PubMedGoogle Scholar
  21. Gale, E.F. and J.P. Folkes: The assimilation of amino acids by bacteria. 15. Actions of antibiotics on nucleic acid and protein synthesis in Staphylococcus aureus. Biochem. J. 53, 493 (1953).PubMedGoogle Scholar
  22. Garrett, E.T., O.K. Wright, G.H. Miller and K.L. Smith: Quantification and prediction of the biological activities of chloramphenicol analogs by microbial kinetics. J. Med. Chem. 9, 203 (1966).PubMedCrossRefGoogle Scholar
  23. Goldberg, I.H. and K. Mitsugi: Inhibition by sparsomycin and other antibiotics of the puromycin-induced release of polypeptide from ribosomes. Biochemistry 6, 383 (1967).PubMedCrossRefGoogle Scholar
  24. Hahn, F.E.: Relations between chemical structure and antibiotic action of chloramphenicol. 3eme Congres International de Biochimie, Bruxelles 1955. Résumés des Communications 92.Google Scholar
  25. Hahn, F.E.: Chloramphenicol. In Antibiotics I, Mechanism of Action. Springer, Berlin-Heidelberg-New York, 1967a, p 308.Google Scholar
  26. Hahn, F.E.: Effects of chloramphenicol in cell-free amino-acid polymerizing systems. Proc. 5th Internat. Congr. Chemoth. C 6/5, 387 (1967b).Google Scholar
  27. Hahn, F.E.: Relationship between the structure of chloramphenicol and its action upon peptide synthetase. Experientia 24, 856 (1968).PubMedCrossRefGoogle Scholar
  28. Hahn, F.E., J.E. Hayes, C.L. Wisseman, H.E. Hopps and J.E. Smadel: Mode of action of chloramphenicol. VI. Relation between structure and activity in the chloramphenicol series. Antibiot. & Chemotherapy 6, 531 (1956).Google Scholar
  29. Hahn, F.E. and C.L. Wisseman: Inhibition of adaptive enzyme formation by antimicrobial agents. Proc. Soc. Exptl. Biol. Med. 76, 533 (1951).Google Scholar
  30. Hahn, F.E., C.L. Wisseman and H.E. Hopps: Mode of action of chloramphenicol. II. Inhibition of bacterial D-polypeptide formation by an L-stereoisomer of chloramphenicol. J. Bact. 67, 674 (1954).PubMedGoogle Scholar
  31. Hamburger, R.N. and J.H. Douglass: Chloramphenicol-specific antibody. II. Reactivity to analogous of chloramphenicol. Immunology 17, 587 (1969).PubMedGoogle Scholar
  32. Hansch, C., E. Kutter and A. Leo: Homolytic constants in the correlation of chloramphenicol structure with activity. J. Med. Chem. 12, 746 (1969).PubMedCrossRefGoogle Scholar
  33. Hansch, C., R.M. Muir, T. Fujita, P.P. Maloney, F. Geiger and M. Streich: The correlation of biological activity of plant regulators and chloromycetin derivatives with Hammett constants and partition coefficients. J. Am. Chem. Soc. 85, 2817 (1963).CrossRefGoogle Scholar
  34. Hansch, C., K. Nakamoto, M. Gorin, P. Denisevich, E.R. Garrett, S.M. Heman-Ackah and C.H. Won: Structure-activity relationship of chloramphenicols. J. Med. Chem. 16, 917 (1973).PubMedCrossRefGoogle Scholar
  35. Harris, R.J. and R.H. Symons: On the molecular mechanism of action of certain substrates and inhibitors of ribosomal peptidyl transferase. Bioorganic Chem. 2, 266 (1973).CrossRefGoogle Scholar
  36. Höltje, H.-D. and L.B. Kier: A theoretical approach to structure-activity relationships of chloramphenicol and congeners. J. Med. Chem. 17, 814 (1974).PubMedCrossRefGoogle Scholar
  37. Huebner, C.F. and C.R. Scholz: The synthesis of chloramphenicol analogs. J. Am. Chem. Soc. 73, 2089 (1951).CrossRefGoogle Scholar
  38. Inouye, M.: A three-dimensional molecular assembly model of a lipoprotein from the Escherichia coli outer membrane. Proc. Nat. Acad. Sci. USA 71, 2396 (1974).PubMedCrossRefGoogle Scholar
  39. Jardetzky, O.: Studies on the mechanism of action of chloramphenicol. I. The conformation of chloramphenicol in solution. J. Biol. Chem. 238, 2498 (1963).Google Scholar
  40. Jardetzky, O. and G.R. Julian: Chloramphenicol inhibition of polyuridylic acid binding to E. coli ribosomes. Nature 201, 396 (1964).CrossRefGoogle Scholar
  41. Julian, G.R.: 14C-Lysine peptides synthesized in an in vitro Escherichia coli system in the presence of chloramphenicol. J. Mol. Biol. 12, 9 (1965).PubMedCrossRefGoogle Scholar
  42. Klein, R.S., M.P. Kotick, K.A. Watanabe and J.J. Fox: Nucleosides. LXXIII. Ribosyl analogs of chloramphenicol. J. Org. Chem. 36, 4113 (1971).PubMedCrossRefGoogle Scholar
  43. Kolosov, M.N., M.M. Shemiakin, A.S. Khokhlov and A.I. Gurevich: Chloramphenicol, In Khimia Antibiotikov I, Iedatsto Akademii Nauk USSR, 1961.Google Scholar
  44. Kono, M., K. O’Hara, M. Honda and S. Mitsuhashi: Drug resistance of staphylococci. XI. Induction of chloramphenicol resistance by its derivatives and analogues. J. Antibiot. (Tokyo) 22, 603,(1969).Google Scholar
  45. Kuéan, Z. and F. Lipmann: Differences in chloramphenicol sensitivity of cell-free amino acid polymerization systems. J. Biol. Chem. 239, 516 (1964).Google Scholar
  46. Lamborg, M.R. and P.C. Zamecnik: Amino acid incorporation into protein by extracts of E. coli. Biochim. Biophys. Acta 42, 206 (1960).PubMedCrossRefGoogle Scholar
  47. Leo, A., C. Hansch and D. Elkins: Partition coefficients and their use. Chem. Rev. 71, 525 (1971).CrossRefGoogle Scholar
  48. Lien, E.J., C. Hansch and S.M. Anderson: Structure-activity correlations for antibacterial agents on Gram-positive and Gram—negative cells. J. Med. Chem. 11, 430 (1968).PubMedCrossRefGoogle Scholar
  49. Long, L.M. and H.D. Troutman: Chloromycetin. Synthesis of alpha-dichloracetamidobeta-hydroxy-p-nitropropiophenone. J. Am. Chem. Soc. 73, 481 (1951).CrossRefGoogle Scholar
  50. Maxwell, R.E. and V.S. Nickel: The antibacterial activity of the isomers of chloramphenicol. Antib. & Chemotherap. 4, 289 (1954).Google Scholar
  51. Molho, D. and L. Molho-Lacroix: Étude comparée de l’antagonisme entre quelques dérives de la phénylalanine et la chloromycetine la 132 thiénylalanine et la ß phenylsérine. Bull. Soc. chim. biol. 34, 99 (1952).PubMedGoogle Scholar
  52. Monro, R.E. and K.A. Marcker: Ribosome-catalyzed reaction of puromycin with a formylmethionine-containing oligonucleotide. J. Mol. Biol. 25, 347 (1967).PubMedCrossRefGoogle Scholar
  53. Monro, R.E. and D. Vazquez: Ribosome-catalyzed peptidyl transfer: Effects of some inhibitors of protein synthesis. J. Mol. Biol. 28, 161 (1967).PubMedCrossRefGoogle Scholar
  54. Nierhaus, D. and K.N. Nierhaus: Identification of the chloramphenicol-binding protein in Escherichia coli ribosomes by partial reconstitution. Proc. Nat. Acad. Sci. USA 70, 2224 (1973PubMedCrossRefGoogle Scholar
  55. Nirenberg, M.W. and J.H. Matthaei: The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides. Proc. Nat. Acad. Sci. USA 47, 1588 (1961).PubMedCrossRefGoogle Scholar
  56. Pestka, S.: Studies on the formation of transfer ribonucleic acid-ribosome complexes. VIII. Survey of the effects of antibiotics on N-acetyl-phenylalanylpuromycin formation: Possible mechanism of chloramphenicol action. Arch. Biochem. Biophys. 136, 80 (1970).PubMedCrossRefGoogle Scholar
  57. Pestka, S.: Studies on transfer ribonucleic acid-ribosome complexes. XIX. Effects of antibiotics on peptidyl puromycin synthesis on polyribosomes from Escherichia coli. J. Biol. Chem. 247, 4669 (1972).PubMedGoogle Scholar
  58. Pestka, S.: Chloramphenicol. In Antibiotics III, Corcoran and Hahn, Edts. Springer, Berlin-Heidelberg-New York, 1974, p 370.Google Scholar
  59. Pongs, O., R. Bald and V.A. Erdmann: Identification of chloramphenicol-binding protein in Escherichia coli ribosomes by affinity labeling. Proc. Nat. Acad. Sci. USA 70, 2229 (1973).PubMedCrossRefGoogle Scholar
  60. Pongs, O., K.H. Nierhaus, V.A. Erdmann and H.G. Wittmann: Active sites in Escherichia coli ribosomes. FEBS Letters 40 Suppl., 28 (1974).Google Scholar
  61. Rebstock, M.C., H.M. Crooks, J. Controulis and Q.R. Bartz: Chloramphenicol (chloromycetin). IV. Chemical studies. J. Am. Chem. Soc. 71, 2458 (1949).CrossRefGoogle Scholar
  62. Rebstock, M.C. and C.D. Stratton: Some compounds related to chloromycetin. J. Am. Chem. Soc. 77, 4054 (1955).CrossRefGoogle Scholar
  63. Rebstock, M.C., C.D. Stratton and L.L. Bambas: Compounds related to chloromycetin. 1-Biphenyl and ring-substituted 1-biphenyl-2-dichloracetamido-1,3-propanediols. J. Am. Chem. Soc. 77, 24 (1955).CrossRefGoogle Scholar
  64. Rendi, R. and S. Ochoa: Effect of chloramphenicol on protein synthesis in cell-free preparations of Escherichia coli. J. Biol. Chem. 237, 3711 (1962).PubMedGoogle Scholar
  65. Shaw, W.V.: The enzymatic acetylation of chloramphenicol by R-factor resistant Escherichia coli. J. Biol. Chem. 242, 687 (1967).PubMedGoogle Scholar
  66. Shemiakin, M.M., M.N. Kolosov, M.M. Levitov, K.I. Germanova, M.G. Karpetian, Iu.B. Svetsov and E.M. Bamdas: Dependency between structure and antimicrobial activity of chloromycetin (Levomycetin) and the mechanism of its effect. Doklady Akademii Nauk USSR 102, 953 (1955).Google Scholar
  67. Shemiakin, M.M., M.N. Kolosov, M.M. Levitov, K.I. Germanova, M.G. Karpetian, Iu.B. Shetsov and E.M. Bamdas: Researches into the chemistry of chloromycetin (Levomycetin). VIII. Dependency of antimicrobial activity of chloromycetin on its structure and the mechanism of effect of chloromycetin. Zhurnal obschei khimii 26, 773 (1956).Google Scholar
  68. Shifrin, S.: The Role of Charge Transfer in Pharmacology. In Structure-Activity Relationships, Vol. 1, C.J. Cavallito, ed., Pergamon Press, Oxford, 1973, p 167.Google Scholar
  69. Shipman, L.L., R.E. Christoffersen and B.V. Cheney: Ab initio calculations on large molecules using molecular fragments. Lincomucin model studies. J. Med. Chem. 17, 583 (1974).PubMedCrossRefGoogle Scholar
  70. Speyer, J.F., P. Lengyel, C. Basilio, A.J. Wahba, R.S. Gardner and S. Ochoa: Synthetic polynucleotides and the amino acid code. Cold Spring Harb. Symp. Quant. Biol. 28, 559 (1963).CrossRefGoogle Scholar
  71. Suzuki, Y. and S. Okamoto: The enzymatic acetylation of chloramphenicol by the multiple drug-resistant Escherichia coli carrying R-factor. J. Biol. Chem. 242, 4722 (1967).PubMedGoogle Scholar
  72. Telesnina, G.N., M.A. Novikova, G.L. Zhdanov, M.N. Kolosov and M.M. Shemiakin: The effect of chloramphenicol analogs on protein biosynthesis in a cell-free Escherichia coli B system. Experientia 23, 427 (1967).PubMedCrossRefGoogle Scholar
  73. Vazquez, D.: Mode of action of chloramphenicol and related antibiotics. 16. Symp. Soc. Gen. Microbiol. Biochemical Studies of Antimicrobial Drugs, p 169. Cambridge Univ. Press 1966.Google Scholar
  74. Wilbrandt, W. and T. Rosenberg: The concept of carrier transport and its corollaries in pharmacology. Pharm. Rev. 13, 109 (1961).PubMedGoogle Scholar
  75. Wisseman, C.L., J.E. Smadel, F.E. Hahn and H.E. Hopps: Mode of action of chloramphenicol. I. Action of chloramphenicol on assimilation of ammonia and on synthesis of proteins and nucleic acids in Escherichia coli. J. Bact. 67, 662 (1954).PubMedGoogle Scholar
  76. Woolley, D.W.: A study of non-competitive antagonism with chloromycetin and related analogues of phenylalanine. J. Biol. Chem. 185, 293 (1950).PubMedGoogle Scholar
  77. Yukioka, M. and S. Morisawa: Inhibition of the chloramphenicol binding to ribosomes by the sparsomycin-induced binding of aminoacyl-tRNA to ribosomes. Biochem. Biophys. Res. Comm. 48, 1444 (1972).PubMedCrossRefGoogle Scholar
  78. Zygmunt, W.A.: Studies of chloroacetyl derivatives as bacterial antagonists. Canad. J. Microbiol. 7, 833 (1961).Google Scholar

Copyright information

© Springer-Verlag/Wien 1975

Authors and Affiliations

  • Fred E. Hahn
  • Peter Gund

There are no affiliations available

Personalised recommendations